
Model-Driven Business Process Recovery

Ying Zou1, Terence C. Lau2, Kostas Kontogiannis3, Tack Tong2, and Ross McKegney2

Dept. of Electrical and Computer
Engineering1

Queen’s University
Kingston, ON, Canada
zouy@post.queensu.ca

IBM Canada Laboratory2
Toronto,ON, Canada

{lautc, tacktong,
rmckegne}@ca.ibm.com

Dept. of Electrical and Computer
Engineering3

University of Waterloo
Waterloo, ON, Canada

kostas@swen.uwaterloo.ca

Abstract
A business process attempts to encapsulate the delivery
of a sequence of tasks, typically starting from accepting
a service request and ending at certain points, such as
the completion of the service. In this paper, we propose a
model-driven business process recovery framework that
captures the essential functional features representing a
business process. The framework utilizes static tracing
techniques and a number of heuristics to map source
code entities to high-level business process entities. A
case study is preformed to recover IBM® WebSphere®
Business Integration business processes from IBM
WebSphere Commerce code. The experimental result
demonstrates the effectiveness of the proposed
framework.

1. Introduction

A business process can be defined as a set of interrelated
tasks linked through a number of decision activities.
Business processes have starting points and ending
points, and they are repeatable. Moreover, business
processes encapsulate the knowledge of operations and
services provided by an organization. For example, the
business process followed when a book is ordered may
consists of a number of tasks such as checking the
availability of the book, the need to restock the
inventory, or the validity of the buyer’s credit card.

Typically, a workflow represents a business process.
It describes essential tasks, participants, business roles
and resources required by the process. For the example
of ordering a book, the workflow describes the
participants (such as the buyer and the supplier), the
tasks taken by each participant, and the order of the
executions, along with the decisions for their executions.

Initially, the linkage between workflow entities and
the underlying source code implementation can be
established via the requirement specification and design
documentation. However, the business application
domain and the software implementation domain are
subject to constant changes, and evolve independently. In
the business domain, business processes are tailored to
meet specific customers’ requirements. Similarly,
software development companies are continuously
adding new functional features to their software products
in order to keep their competitive edge. Thus, over time,
the linkage between workflow entities and source code
implementation drifts away from the initial documented
linkage. It is a challenging task to maintain the
consistency between the business workflow and the
underlying source code implementation, especially when
the functionality is deeply embedded in the existing
source code and spread out in various physical locations.

To reflect the most up-to-date linkage between
business tasks and their implementation in source code,
we propose a model-driven business process recovery
framework that extracts the as implemented business
workflows from the source code and establishes
associations between the business domain entities (such
as tasks and decisions) and the implementation domain
entities (such as methods and conditional constructs). We
focus on the functional behaviors of business
applications and the sequence of executions. Instead of
tracing the requirements through a business application
to recover a business process, we perform an automated
analysis of the source code using heuristics to capture
code fragments that implement business workflow
entities. This analysis is performed through an abstract
business process model that helps us associate relevant
functional behaviors in the code with business workflow
entities.

In this paper, our main focus is on the recovery of
business processes from the source code of the
information system implementing these processes. The

ultimate goal of our research is to synchronize changes
that occur in business processes with ones in the
information systems that implement these processes.
This would help developers and businesses keep their
business process documentation up-to-date. We envision
that this approach would reduce the knowledge inter-
dependency between the business domain and the
software implementation domain. It would also assist
businesses and developers perform impact analysis when
changes in business processes require changes to the
source code, and vice versa.

The remainder of the paper is organized as follows.
Section 2 gives an overview of business workflows.
Section 3 introduces e-commerce information systems,
which are the focus of our research to recover business
processes. Section 4 presents our model-driven business
process recovery framework. Section 5 provides the
heuristic rules for refining the recovery process. Section
6 describes the representation of the as implemented
workflow. Section 7 discusses case studies that utilize
the proposed approach. Section 8 introduces related
work. Section 9 concludes the paper.

2. Business Workflows

A workflow describes a business process. It details
various tasks involved in a business process and shows
the decisions and rules that control the process.
Furthermore, it describes the execution flow between
these tasks. Table 1 gives the definitions of the workflow
structural entities. The structural workflow entities are
used to create the connected activity diagrams for
representing workflows, such as the one in Figure 1.
Business workflows are usually defined independently of
the implementation domain and are mainly used by
business people rather than technical experts. A business
workflow contains tasks, data, loops, stops, decisions,
choices and “goto” references, which can be visually
represented using graphs, or stored in XML documents.

For example, Figure 1 illustrates an activity diagram for
a business workflow, modeled in IBM WebSphere
Business Integration Workbench. The depicted business
process concerns the checking stale (line) items allocated
from an order for an e-commerce vendor. The process’
main goal is to periodically examine the status of stale
items and process them appropriately based on a number
of decisions. In Figure 1, the boxes represent tasks. The
“Time to Execute” task starts the process
asynchronously by a scheduler. The next task (“Find
stale order line items”) finds all stale items in all orders
stored in the Order Management System. A set of
business rules (defined elsewhere) specify the criteria for
an item to be considered stale. For example, stale items
could be allocated from an expected or back-ordered
inventory. Each item is verified iteratively (indicated by
the “goto” entity in the figure). Each item is checked to
determine if it is still considered stale. Other decisions
are checked based on the outcome of the source tasks.
Finally, the output of the process is determined (either
“Deallocate expected” or “Deallocate existing” task is
processed).

Workflow
Entities

Definitions

Tasks A task is the lowest level of work that performs
one logical step in a workflow activity diagram.

Decisions
and Their
Choices

A decision node describes the routing rules that
a sequence of tasks must follow. A decision is
followed by multiple or binary (Yes or No)
choices.

Loops and
Stops

A loop represents a repetition of a sequence of
tasks. A stop node denotes a termination of the
job.

Data Data refers to the inputs/outputs for tasks.
Goto
Reference

A goto reference represents the repetition of
logic steps, and implements a loop.

Table 1: Workflow Structural Entities and Definitions [8]

Figure 1: An Example Business Workflow from IBM WebSphere Business Integration Workbench

Besides the workflow entities defined in Table 1, a
workflow includes additional annotations that denote
other details such as scheduling frequency (how often is
the process executed, for example), and task annotations
(such as resource requirements). In our current research,
we are interested in gathering functional tasks (boxes in
Figure 1), decisions (diamonds in Figure 1), and their
connections to accomplish a business process from start
to end. We are not able to recover scheduling
information or task annotation from source code.

Our recovery framework may produce additional
information that is not apparent in the business
workflow. For example, the workflow shown in Figure 1
does not show a decision box to handle the case when an
item is no longer stale; instead, that case is specified
through free-form text annotation attached to the “verify
order item is stale” task. Our recovery approach is likely
to recover such a missing decision diamond that is used
to completely implement such a task. The recovered
information could be used to update the business process
workflow with more accurate information detail or it can
be noted aside while keeping the process workflow
diagram unchanged.

Web
Controller

Task
Command

Task
Command

Controller
Command

Access
Bean

Access
Bean

Access
Bean

Access
Bean

Database

Invoke

Invoke

Data update/
retrieval

Figure 2: Controller-Centric Architecture for Web
Applications

3. Business Information Systems

In our research, we focus on the information system that
implements workflow for Web applications. In an
implementation domain, an information system consists
of software components, data variables, and execution
conditions. These implementation domain entities each
correspond to particular business process domain
entities. For example, software components usually
correspond to tasks; and execution conditionals
correspond to decisions in the business workflow.

Information systems are deployed on scalable Web
sites. A typical e-commerce Web application adopts the
controller-centric architecture. This architecture

approach utilizes Model-View- Controller (MVC) design
pattern [5]. Figure 2 illustrates the fundamental
structures in the architecture of a business information
system [6]. In this architecture, a Web controller is built
on top of the application to perform the central
management for the client (Web browsers) requests. The
Web controller is responsible for forwarding a client’s
requested Web pages to the appropriate controller
command. In such an architecture, each Web page is not
directly linked to another page. Instead, it is connected to
its associated controller command. The controller
command object is invoked in turn to complete a
transaction. An example of a controller command is one
that handles the ordering of books online.

The controller command serves a client’s request by
using access beans and task commands. The access beans
are objects that retrieve/update business data in a
relational database. For example, an access bean would
retrieve details about the book being displayed such as
the author’s name and the date of publication. Task
commands, known as software components, are usually
designed using command design pattern [5]. For
example, a task command may be responsible for
ensuring that a book is available or if a book should be
restocked. The task command uses access beans for data
update/retrieval from a database.

In a well-designed information system, the code
responsible to implement each task is encapsulated into
objects, such as objects that extend task commands.
However, in most cases, tasks are implemented as code
blocks, which are scattered throughout the source code
and are highly coupled with access beans. To recover a
business process from source code, one of the challenges
is to define fine-tuned criteria to identify source code,
which corresponds to workflow entities.

4. A Framework for Model Driven Business
Process Recovery

In this section, we present our model driven business
process recovery approach, as depicted in Figure 3. The
goal of our framework is to automatically recover the as
implemented business workflow that abstracts source
code entities to high-level business workflow entities. It
also recovers the flow of control between source code
entities. Once the as implemented workflow is obtained,
we strive to synchronize the business workflow and the
as implemented workflow.
 The result of the as implemented workflow is defined
in an abstract business process model that describes the
commonality of entities in the business workflow domain
and the information system domain. To produce data that
conforms to this abstract business process model, the
source code of the information system is analyzed
automatically. The source code entities of interest are
selected as potential candidates to represent business

workflow entities. A set of heuristics are used to reduce
the entities that have been selected for analysis. These
heuristics have been developed through consultation with
developers and architects at IBM Canada. In addition, we
recover the flow of control between the entities using
static tracing techniques. We now describe each part of
the framework.

Business
Workflow

Abstract
Business Process

Model

Business
Information

System

As Implemented
WorkFlow

1. Describe

1. Describe

2. Recover

Synchronize

Figure 3: Framework for Model Driven Business
Process Recovery

4.1. Abstract Business Process Model

A basic consideration for building an abstract process
domain model is to bridge the gap between two domains:
the business application domain (business workflow) and
the implementation domain (business information
system). By examining the basic structural entities in
business workflows, as shown in Table 1, we identify the
corresponding source code entities that are candidates for
locating them in the implementation of information
systems. The analysis of the business workflow entities
and the implementation domain entities permits us to
develop an abstract business process model for e-
commerce applications.

Figure 4 illustrates the abstract business process
model we developed. The ControllerCommand class
refers to an object of type Controller Command. A
ControllerCommand class is a likely candidate to
contain a business process, corresponding to one
business workflow. As depicted in the architecture of the
information system (Figure 2), a controller command
class implements one business process, which consists of
a sequence of tasks along with conditions. Whereas a
business workflow consists of abstract entities such as
Tasks and Decisions; a Controller Command
implementing such a workflow will contain code
workflow entities, such as Loop, TaskCommand,
Decision and Choice.

Specially, the TaskCommand class denotes business
logic pieces that are implemented as classes. The Task
class refers to code fragments that implement pieces of
business logic. Essentially, a Task object gathers several
related method invocations and access beans that access
a database.

The Decision class describes evaluation expressions
occurring in if, while, and for statements. The

Decision class corresponds to the decision boxes used
in business process workflows. The Choice class
specifies conditions that lead to Yes or No branches.
Moreover, the Yes/No branches may contain, in turn, a
sequence of code workflow entities.

The Loop class represents iterations of processing
steps that are encapsulated in for, while, and do
statements. Normally, such a statement starts with an
evaluation expression that specifies the conditions for the
termination of an iteration. Therefore, the Loop class
contains a Choice class that describes the termination of
the iteration.

Task
linenumber : String
type : String
relatedLines : Array

Decison
expression : S tring
linenum ber : S tring

TaskCommand
linenum ber : S tring

Loop
condition : Yes | No
startline : String
endline : String

ControllerComm and
class : String

Yes
startline : String
endline : String

Choice
linenumber : String
expression : String

11

11

CodeWorkflowEntity
name : String

1..*1..*

1..*1..*

No
startline : String
endline : String

11

1..*1..*

Figure 4: Abstract Business Process Model

In addition, the attributes, such as linenumber,

startline, and endline, refer to the code range or
position of a particular entity in source code. To
facilitate the workflow synchronization, we link the as
implemented workflow with source code, using the line
numbers where each source code entity appears in the
source code. Once changes are detected in the business
workflow, we can locate the affected code workflow
entities in the as implemented workflow via the
associations between the two workflows. Furthermore,
we can determine the affected code areas in the
information system, using the line numbers specified in
the as implemented workflow. Similarly, the changes in
source code can also be propagated into the business
workflow.

4.2. Workflow Recovery Process

Conceptually, the business workflow consists of a trace
record of the execution of an application. Unfortunately,
generating a complete trace record of an application
would produce a workflow graph that is likely to contain
a large number of irrelevant code entities that do not map
to business workflow entities. To overcome this problem,
we use a set of heuristics to prune the number of code
entities included in the trace records. These heuristics are
derived based on our experience in developing e-
commerce applications and are dependent on the type of
Web application technologies used. In our research, the
e-commerce application is implemented in Java™ code

along with design patterns, as explained in Section 3.
Our recovery approach is fully automated and it is
integrated in the development environment, thus
enabling easy and immediate access for developers to
monitor changes to their implemented workflow. The
process is described in the following subsections.

4.2.1. Trace Record Generation

Generally, a trace records a sequence of operations
executed in an application. Dynamic traces are
performed by executing the application upon providing
different input values. Static traces, on the other hand,
track the potential sequence of operations without
executing the application. Static traces are independent
of the input and do not require the setup and execution of
the application.

In our research, we attempt to analyze enterprise level
e-commerce applications. Static traces are more
convenient as they do not require highly skilled
personnel and computation resources to install and
operate such large-scale applications. Moreover, static
traces give a complete record of the possible execution
paths of an application. In short, the static tracing starts
from the entry of the main method of the controller
object in a Web application, and ends at the exit of that
main method. The extraction process visits every
statement in the method body in sequence, and
recursively follow the call path of the method. We
perform the static tracing using an approach similar to [3,
7].

4.2.2. Trace Record Refinement

Information systems are workflow applications that are
written in Java and used in e-commerce environments. A
trace record for such applications would contain a large
sequence of operations that are too low level to have
equivalent representation in the business workflow;
therefore, we must prune the paths of static traces. The
refinement process filters excessive code-oriented
information, and merges small fine-grained code
fragments implementing business logic into higher-level
coarse-grained business workflow entities. The process
also generates a pseudo name to denote the aggregate
business logic.

To perform the pruning, we first need to parse the
source code of the Web application, and create a type
repository. The type repository stores the names of all
Java classes defined in the application. We adopt the
parser built in Eclipse [9] for parsing the source code and
generating an Abstract Syntax Tree (AST) of the source
code. Eclipse is used for a Java programming
development environment and an open source tool
integration platform. In particular, we utilize the Java
Document Object Model (JDOM) provided by Eclipse

Development Tools (JDT) to analyze the structures of
Java programs. An Abstract Syntax Tree (AST) of Java
source code can be accessed via the JDT API. We
traverse the AST to analyze source code as a tree of
nodes, where each node represents a part of the source
code (for example, CaseStatement, DoStatement,
IfStatement, Literal, TryStatement).

As depicted in Figure 2, e-commerce applications
adopt controller-centric architecture where a controller
command object provides a single entry point for
intercepting HTTP requests coming from end users. The
controller command manages data and control flows to
accomplish a single business process. It makes use of
task command objects and access beans. In this context,
our tracing focuses on the source code of the controller
commands, and ignores the code inside task commands
and access beans. In addition, we apply heuristic rules to
map source code entities to business workflow entities.
As an output of the static tracing, the as implemented
workflow is extracted from the source code. It is stored
in an XML format, which conforms to the abstract
business process domain model, as depicted in Figure 4.

4.3. As implemented Workflow and Business

Workflow Synchronization

Once the as implemented workflow is generated, we aim
to establish the linkage between the business workflow
and the as implemented workflow. In this context, it is
important that the two workflows have similar structures.
In this way, entities in the as implemented workflow can
be easily recognized and compared with the entities in
the business workflow. Therefore, our goal is to
automatically convert the XML represented as
implemented workflow into a graph that is also used to
represent business workflows. A software analyst is
responsible for comparing entities in both workflows and
mapping them to each other. In addition to the domain
knowledge required for establishing the mapping, this
process is also assisted by the automated naming
technique that is used during the static tracing process.
For example, a business workflow task named “verify
order item is stale” is likely to be mapped to a recovered
task named “verifyOrder”, which in turn is assigned
based on the name of a Java method.

5. Heuristics for Trace Record Refinement
and Workflow Mappings

As described in the previous section, our recovery
approach makes use of a number of heuristics to reduce
the complexity of the generated traces and to map the
traces to business process entities. In this section, we
present these heuristics and explain our intuitions behind
using them.

5.1. Workflow Mapping Heuristics

To extract the as implemented workflow from the source
code, we identify a set of mapping rules that associate
the entities in the business workflow with the code
entities in the source code. As listed in Table 2, column 1
specifies the entities used in a business workflow.
Column 2 denotes the related code entities. For example,
a task command object in the source code represents the
task entity in a business workflow. Moreover, the
mapping from workflow entities to code entities is a one-
to-many relation. For instance, the Choice workflow
entity is related to if/switch statements. Such source
code entities are used to compose the as implemented
workflow. To gather the source code entities, we
developed a feature-based technique that focuses on
examining method invocations, object declarations, and
database access statements to capture all possible
candidates for the as implemented workflow entities.

Workflow
Entities

Code Entitites in Source Code

Task Task commands, code fragments,
access beans

Data Vector objects, Enumeration
objects, List objects, access beans

Decision Evaluation expression in while,
for and do statements

Choice then/else branches in if
statement, Switch statement,

Loop Loop bodies in while, for and do
statements

Stop return statement
Goto
reference

goto statement, and end of loop
body

Table 2: Mapping between Work Entities and Source
Code Features

5.2. Trace Record Refinement Heuristics

In most cases, workflow entities can be located in source
code by strong evidence of domain knowledge. For
example, Decision entities are cognitively relevant to
the evaluation expressions in while, for, or do
statements. Ideally, the Task workflow entity,
representing a business processing step, is explicitly
implemented as Task Command objects. However, in the
real world of development, the Task workflow entity can
also be implemented as code fragments that are not
developed as objects. In this context, to successfully
recover a complete business workflow from applications,
it is critical to define fine-tuned criteria that facilitate
effectively locating possible task workflow entities (i.e.,
pieces of business logic). Essentially, the basic principle
for detecting task workflow entities in source code is that
the code fragments implement business services (e.g.,

ordering of books) and comply with business rules.
Normally, business rules are associated with database
access and data validation. An example of a business rule
is to verify whether the item is in a shopping cart.

In our study, we focus on the IBM e-commerce
systems with the architecture shown in Figure 2. To
locate source code implementing workflow entities from
the IBM e-commerce code, we developed a set of
heuristic rules for filtering irrelevant code entities based
on the characteristics of the code. To this end, during the
traversal of the AST generated by the static trace
technique, we focus on gathering potential candidates for
task workflow entities. In the rest of this subsection, we
present the heuristic rules that are used to determine
whether code features can be extracted as task workflow
entities from IBM e-commerce applications.

1. OrderAccessBean abOrderHelper =
2. new OrderAccessBean();
3. Vector vItems = abOrderHelper.findValidItems(storeId);
4. Enumeration enumItems = vItems.elements();
5.
6. getContext();
7.
8. try {
9. Transaction.commit();
10. }
11. catch (javax.transaction.RollbackException ex) {
12. throw new Exception(……);
13. }

Figure 5: Sample Controller Command Code

Rule 1  Utility code: Utility code, such as utility
objects or methods, provides internal services that
facilitate the completion of a business process. Such
objects are not part of a business process and instead act
as helpers; therefore, they should not be extracted. For
example, a utility object performs transaction
initialization, commitment, rollback, logging, or tracing.
Generally, utility methods are designed as public static
methods that can be invoked globally inside a Web
application. As shown in line 9 in Figure 5, the
Transaction class offers a global method to commit a
transaction. Its method commit() is invoked directly via
its containing class without an object declaration in the
body of its calling method. By these characteristics, we
can detect utility code entities. Furthermore, a catalog of
utility classes can be established by consulting
developers.

Rule 2  Java type objects and their methods: A
Java type class, such as String, Enumeration, and Vector,
provide primitive building blocks to construct
applications. Code fragments based on these basic types
are not considered to represent task workflow entities,
and therefore are not considered in the recovery of the
business process. For example, as illustrated in line 4 in

Figure 5, the elements() method in Enumeration is
commonly used in Java applications. Therefore, the static
tracing ignores that method call.

Rule 3  Exception objects and their methods: A
user-defined exception class extends an abstract
exception class provided by the Java API. Typically,
exception objects are responsible for error handling
without encapsulating business logic. An exception
object can be easily identified in catch statements, as
illustrated in line 11 and 12 in Figure 5, or in throw
statements. In some cases, exception may be used to
report error cases in the business process handling; we
currently do not handle such cases.

Rule 4  Access bean objects and their methods: An
access bean object is an object wrapper that encapsulates
the operations for data retrieval and updates. It mainly
contains a set of trivial methods (i.e., a set of getters and
setters) that take parameters, compose database access
statements, and populate database results. Moreover,
access bean objects perform a certain set of business
rules, such as data item validation, approval, and
removal. As illustrated in Figure 5, abOrderHelper is
an access bean object of the type OrderAccessBean.
The method findValidItems() finds items from the
database, and also employs business rules to validate the
returned items. This type of method is a good candidate
for a task workflow entity implementation. Furthermore,
we use the name of this method as the name of the
recovered task workflow entity. Access bean objects can
be distinguished by the class inheritance structure. A
specialized access bean extends an abstract access bean.
Using this rule, we collect non-trivial methods of access
beans appearing in controller command objects. These
non-trivial methods are considered as candidates for task
workflow entities.

Rule 5  Task command objects and their methods:
A task command class adopts the command design
pattern, in which a command interface extends an
abstract command interface and provides a concrete
implementation of its action. We examine the class
inheritance relations and interface implementation
declarations in the AST representation of the source
code. If a task command class is an extension to an
abstract task command, we collect its task command
objects as task workflow entities. In this context, the
name given to the task workflow entities in the recovered
workflow is the name of the task command class.

Rule 6  Methods inside controller commands: A
controller command class can define its own methods.
The methods can be either trivial methods (i.e., a set of
setter and getter methods) or user-defined methods. To

discover the task workflow entities, we ignore the trivial
methods, but further analyze the statements inside the
body of user-defined methods.

Rule 7  Other user-defined class objects and their
methods: As previously mentioned, one basic principle
to determine whether a non-trivial method in user-
defined classes contains any business logic is to check
whether the method involves database accesses and
employs business rules to handle data items. In this case,
the task workflow entity detection involves examining
the database usage and population. Furthermore, we
check whether a business rule is applied to validate the
data, for example, examining whether the data is used in
decision expressions. In this context, the name of the
detected task workflow entities is taken from the name of
the user-defined methods.

Figure 6: Example of an As Implemented Workflow in
XML Representation

6. As Implemented Workflow Representation

In Section 4, we discussed our workflow recovery
process that traces the source code, and identifies
workflow entities and their execution paths, along with
the conditions of their executions. Meanwhile, the result
of the as implemented workflow is represented in an
XML format that conforms to the abstract business
process model specified in Figure 4.

Figure 6 demonstrates a sample of an as implemented
workflow. This workflow is extracted from the controller
command that implements the process “release expired

allocation” that was depicted in Figure 1. Task workflow
entities are described by either <task> or
<taskcommand> in the XML document. The <task> tags
refer to the task workflow entities that are extracted from
method invocations. The name attribute of each <task>
tag refers to the name of the invocated method. The
<taskcommand> tags represent the task workflow
entities that are explicitly encapsulated in task command
objects. The <choice> tags correspond to if statements.
The expression attribute of a <choice> tag is generated
from the evaluation expression of the related if
statement. In addition, the <RelatedLines> contains the
line numbers of code fragments that implement
workflow entities.

Moreover, the as implemented workflow in Figure 7
is depicted in a graph by interpreting the XML document
in Figure 6. We follow the same legends used by IBM
WebSphere Business Integration Workbench, shown in
Figure 1.

Start
Use

Find
Stale
Order
Itmes

Has More
Elements? Verify

Stale
Order
Items

Eqauls
“Alloc”

Deallocate
Existing

Inventory
Cmd

Is Using
ATP

bATP
Enabled?

Eqauls
“BO” Deallocate

Expected
Inventory

Cmd

Yes Yes Yes

No

Yes

Yes

1

1

1
Is Stale
Order
Item?

1

NoNo

Stop

Task

Stop Process
Termination

1 Loop
Reference

Decision

No

No

Figure 7: As Implemented Workflow for the Process of
Releasing Expired Allocations

7. Case Study

To demonstrate the effectiveness of the framework
advocated in this paper, we developed a re-engineering
tool that automatically extracts the as implemented
workflow from e-commerce applications. This tool is
fully integrated in Eclipse IDE as an Eclipse plug-in. We
tested the tool on workflow applications, which are IBM
WebSphere Commerce applications. The detailed case
studies and experimental results are presented in this
section.

7.1. IBM WebSphere Commerce

IBM WebSphere Commerce is a family of products for
building e-commerce Web sites and applications. The
product line provides B2B and B2C market models for
creating on-line stores, catalogs, and campaigns. The
business process workflows are defined using IBM
WebSphere Business Integration Workbench,
independent from the IBM WebSphere Commerce
platform. IBM WebSphere Business Integration
Workbench is used to create workflows, and provides a
collection of default business workflows for e-commerce
market models. Typically, business workflows are
customized to meet the requirements of different

merchants. The WebSphere commerce code will change
from version to version. In this case, we aim to
synchronize the IBM WebSphere Business Integration
business workflows with the workflows implemented in
the WebSphere Commerce code. By applying the
proposed model-driven business process recovery
approach, we successfully recover the workflow encoded
in the WebSphere Commerce applications. The extracted
workflow captures the essential workflow entities and
their interactions. The linkage of workflow entities
between IBM WebSphere Business Integration business
workflows and the as implemented workflows is
currently established manually.

IBM WebSphere
Business Integration
Workflow Entities

As Implemented Workflow
Entities

Time to execute StartUse
Find stale order line items FindStaleOrderItems
Verify order item is still
stale

VerifyStaleOrderItems

Deallocate expected DeallocateExpectedInventoryCmd
Deallocate existing
inventory

DeallocateExistingInventoryCmd

Table 3: Workflow Associations for Releasing Expired
Allocations

7.2. Experiment Results

In this section, we evaluate the usefulness and the
applicability of our proposed approach. We selected 86
applications from IBM WebSphere Commerce code for
our experiment. We present two sample processes
including releasing expired allocations (illustrated in
Figure 1 and 7) and processing back orders (illustrated in
Figure 8). Moreover, the “allocate inventory” task in the
back orders process contains a subprocess called
allocating inventory, which is expanded by a sequence of
tasks, as shown in Figure 8. To verify the correctness and
completeness of the recovered as implemented workflow,
we compare it with the exiting business workflows
specified by IBM WebSphere Business Integration
Workbench. Table 3 and Figure 8 illustrate the linkages
for these two processes. The linkages are established
between the extracted workflow entities and the tasks of
the business workflows. By comparing the entities
between the business workflow and the as implemented
workflow, we conclude that the as implemented
workflows from these two processes are matched with
the IBM WebSphere Business Integration workflows.
Other recovered as implemented workflows are verified
by IBM developers. The tool can be integrated in the
IBM WebSphere Application Development environment,
an Eclipse-based IDE, to extract as implemented
workflows from source code for keeping the
documentation up-to-date.

Start
Use

Find
Locked
Orders
With

StatusB

Has More
Elements? Verify

Locked
Orders
With

StatusB

Eqauls “0”

Reprepare
Order Cmd

Find
Invalid
Orders

Items By
Orders

Id

Has More
Elements?

Yes Yes Yes Yes

1

With
Status B?

1

No

Stop

Task

Stop Process
Termination

1 Loop
Reference

Decision

No

Find
By

Order

Allocate
Inventory

Cmd

Process
Order Cmd

!ibError Yes

No No

No

Allocating Inventory Process

Processing Backorders Process
Linkage

Expansion

Figure 8: The Comparison between the As Implemented Workflow and the Business Workflow for Processing Backorders

Discussion: The structure of the as implemented
workflows is relevant to the functional behaviors of the
application. It contains programming-oriented decision
branches, and uses ad hoc naming conventions adopted
by the developers. It may be difficult for business
analysts to understand the structure. In this context, we
cannot replace the business workflows with the as
implemented workflow. However, the as implemented
workflow can be used to inspect the correctness of
business workflows, and refine the business workflows.
Moreover, the as implemented workflow can serve as a
template to guide the creation of a business workflow.

The as implemented workflow contains the essential
task workflow entities in the code, and filters out
unnecessary information. This facilitates establishing up-
to-date associations between the entities of business
workflows and the ones in source code that implement
business workflows. The as implemented workflow and
the associations can indicate whether an information
system fully supports the corresponding business
workflow. In some cases, a system might only partially
implement a workflow.

Moreover, the associations can also indicate the need
for refactoring source code. For example, one of the
premises in designing a workflow application is to
implement each task workflow entity as a task command
object. In the case that a task workflow entity is
implemented as a code fragment, this indicates that such
a code fragment should be refactored and implemented
as a separate task command object.

8. Related Work

Typically, a business process model is concerned with
the functional behaviors of a software system. It can be
represented by UML to describe essential events,
resources, input/output and procedures that govern a
sequence of business activities. A great deal of effort has
been devoted to bridge this significant gap. Koehler et al.
define an IT flow model that provides a high-level
abstraction to the detailed source code [3]. A pattern-
based mapping connects business models with IT flow
models. Consequently, process requirements are
translated into logical formulas, which can be verified

using model checking techniques. However, the business
process model cannot be traced from the source code. Di
Lucca et al. provide heuristic criteria to restructure
business-level UML diagrams from source code [4]. In
this case, the business process model needs to be
recovered manually by human experts from the UML
diagrams.

Eisenbarth et al. describe an automatic technique to
extract static traces for individual stack and heap objects
using call graphs [6]. Tonella et al. present a technique
for the automatic extraction of UML interaction
diagrams from C++ code [7]. These techniques focus on
tracing source code to detect method invocations
between objects. Our static trace technique presented in
this paper focuses on detecting business logic by
traversing the AST and walking through statements. Liu
et al. present a semiotic approach to recover
requirements from legacy systems by analyzing and
modeling behaviors [2]. The approach relies on
executing legacy systems, and captures the input/output
data to the systems. Our approach is solely based on
analyzing the source code of information systems.

9. Conclusion

In this paper, we presented a model-driven re-
engineering framework for recovering business processes
from source code, and establishing the associations
between business workflow and the as implemented
workflow. We addressed the issues, including the
representation of an abstract business domain model, the
detection of business workflow entities in the code, and
the extraction of the as implemented workflow. We
believe that this model-driven business process recovery
framework facilitates the change management of
business workflows and information systems during the
evolution and maintenance process. A plug-in tool was
developed to extract as implemented workflows from
Java-based Web applications.

This is an ongoing collaborative research project of
Queen’s University at Kingston, University of Waterloo,
and IBM Centers for Advanced Studies. The future
extensions to this research focus on refining the criteria
on the detection of business logic in more general source
code, such as open source applications without using
controller-centric architecture. Furthermore, we plan to
investigate the potential for automatically establishing
the associations between business workflows and the as
implemented workflows.

Acknowledgment

This paper represents the views of the authors rather than
IBM. The authors would like to thank the anonymous
reviewers for their insights and suggestions.

Trademarks

IBM and WebSphere are registered trademarks of
International Business Machines Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

References
[1] Thomas Eisenbarth, Rainer Koschke, and Gunther

Vogel, “Static Trace Extraction”, in the proceedings
of 9th Working Conference on Reverse Engineering,
2002.

[2] Kecheng Liu, Albert Alderson, Zubair Qureshi,
“Requirements Recovery from Legacy Systems by
Analysing and Modelling Behaviour”, in the
proceedings of International Conference on Software
Maintenance, 1999.

[3] J. Koehler et al., “From Business Process Model to
Consistent Implementation: A Case for Formal
Verification Methods”, in the proceedings of the
International Enterprise Distributed Object Computing
Conference, 2002.

[4] G. Di Lucca et al., “Abstracting Business Level UML
Diagrams from Web Applications”, in the proceedings
of the International Workshop on Web Site Evolution,
2003.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides, “Design Patterns”, Addison-Wesley,
Pub. Co. 1995.

[6] Bill Moore, Peter Gothager, Michael Mattinson,
Chiara Montecchio, Narayan Prasad, Carla Sofia
Jesus Ribeiro, and Thomas Tolborg, “WebSphere
Commerce V5.4 Developer’s Handbooks”, IBM Red
Books Series.

[7] Paolo Tonella and Alessandra Potrich, “Reverse
Engineering of the Interaction Diagrams from C++
code, in the Proceedings of International Conference
on Software Maintenance, 2003.

[8] User Guide, IBM WebSphere Business Integration
Workbench.

[9] http://www.eclipse.org.

