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Abstract—Users visit web services and compose them to
accomplish on-line tasks. Normally, users enter the same
information into various web services to finish such tasks.
However, repetitively typing the same information into services
is unnecessary and decreases the service composition efficiency.
In this paper, we propose a context-aware ranking approach
to recommend previous user inputs into input parameters and
save users from repetitive typing. We develop five different
ranking features constructed from various types of information,
such as user contexts. We adopt a learning-to-rank approach,
a machine learning technology automatically constructing the
ranking model, and integrate our ranking features into a state-
of-the-art learning-to-rank framework. Our approach learns
the information of interactions between input parameters and
user inputs to reuse user inputs under different contexts.
Through an empirical study on 960 real services, our approach
outperforms two baseline approaches on ranking values to
input parameters of composed services. Moreover, we observe
that textual information affects the ranking most and the
contextual information of location matters the most to ranking
among various types of contextual data.

Keywords-information reuse; service composition; learning-
to-rank; input parameter value recommendation

I. INTRODUCTION

To conduct daily on-line tasks, users have to visit web-
sites and on-line services to compose services together
repeatedly [1]. During the service composition, users are
required to provide values to input parameters of services to
invoke each service. For example, planning a holiday trip
from Toronto to Paris can involve a composition of two
services: Priceline1 and The Weather Network (TWN)2. A
user purchases an airplane ticket on Priceline and checks the
weather status of Paris on TWN. The user needs provide
the information, such as city name, for checking weather,
the contact and credit card information for reserving an
airplane ticket. Filling values into services can be tedious,
especially when the number of services is high and the
previously entered values are required by other or same
services repetitively.

Recently, several approaches have been developed to aid
users in reusing previous user inputs to fill in services.
For example, Chrome Autofill [2] recommends a list of
previous user inputs to users. Firefox Autofill [3] pre-fills
web forms using previous user inputs. Araujo et al. [4]
propose a concept-based approach for pre-filling values
to web forms. Firmenich et al. [5] propose an approach

to annotate web forms and store user information in a
centralized space for web form filling. AbuJarour et al. [6]
propose an automatic approach to sample services and assign
values to input parameters of services. However, the existing
approaches face at least one of the following challenges:
First, the approaches are not designed for helping users in
filling values to input parameters from different types of
services. Second, the existing approaches perform poorly in
ranking or pre-filling values to input parameters. Third, the
approaches are not context-aware. For example, they cannot
distinguish a phone number for receiving a shipping package
and the other one for travel contact.

To address the aforementioned challenges, we propose a
ranking-based approach, ranking a list of previous user in-
puts for an input parameter, to save a user from unnecessary
data entry during a service composition. Our approach pre-
fills an input parameter with the top ranked value of a list and
recommends the rest of the values to a user if he or she is not
satisfied with the pre-filled value. We propose five ranking
features derived from various types of information which
could affect the ranking of previous user inputs, such as user
contexts and user’s past activities. We adopt a learning-to-
rank (LTR) approach [7][8], a supervised machine learning
approach that automatically builds a ranking model from
training data [9], and integrate our ranking features into
a start-of-the-art ranking model named RankSVM [10] a
pairwise learning-to-rank model. When a user input is
entered into an input parameter, an interaction between
the user input and the input parameter is established. Our
approach analyzes and learns all the information of the
past interactions between user inputs and input parameters
to reuse user inputs for input parameter filling. We refer
our approach as a learning-to-reuse approach. The major
contributions of this paper are listed as follows:

• We propose a context-aware meta-data model for cap-
turing and storing user inputs with contextual informa-
tion, such as time. The stored contextual information
of user inputs makes the context awareness of our
approach possible.

• We propose a user model to describe different aspects
of a user, such as user contexts. The model is used for

1. http : //www.priceline.com/

2. http : //www.theweathernetwork.com
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Figure 1: Overall steps for recommending the user inputs to input parameters during a service composition.

conceiving the ranking strategies for our approach.
• We propose a context-aware learning-to-rank model

based approach to identify proper values for input
parameters. Our approach exploits the information of
a user(e.g., user contexts), input parameters and user
inputs for learning the past interactions between user
inputs and input parameters to reuse user inputs for
input parameter filling.

• We empirically test the effectiveness of our approach
on real services. We compare our approach with two
baseline approaches. Our approach outperforms the
baseline ranking approaches. Our approach achieves a
precision of 83% and a recall of 83% in pre-filling
parameters. We observe that the textual similarity based
feature affects the ranking most.

Paper organization. Section II presents the background
of this study. Section III introduces our proposed approach.
Section IV states the case studies. Section V summarizes the
related literature. Section VI concludes the paper.

II. BACKGROUND

Our paper is primarily focused on assisting end-uses in
filling values into services during a service composition. A
web service is a software module enabling inter-operation
between machines over the web. In this paper, our approach
handles the following three types of web services:
• Web Services Description language (WSDL)3 services

is an XML-based description language for describing
the functionality of a web service.

• RESTful services [11] is proposed to simplify the
development, deployment and invocation of web ser-
vices. RESTful services use standard HTTP and permit
various data formats. Web Application Description Lan-
guage (WADL) [12] is an XML description of HTTP-
based web applications.

• Web Application services. The users can also con-
duct various tasks through web applications (e.g., web
forms). A web application is viewed as a type of on-
line web services. The WSDL and RESTful services
are treated as the services with descriptions. The web
forms of web applications are treated as the services
without the formal descriptions.

A service has a set of input parameters intaking values
from users. To invoke a service, every required input pa-
rameter should be filled with a proper value. A user input is
a piece of information entered into services. The user inputs
entered previously into services are an excellent source for
discovering a proper value for an input parameter [4].

III. OVERVIEW OF OUR APPROACH

Figure 1 shows the steps of our approach. Our approach
consists of three major steps:

1) Collecting and storing user inputs with contextual
information. When a user enters a value to an input
parameter, we collect all the information of the inter-
action between the value and the input parameter, such
as the time of the interaction and the location where
the user enters the value.

2) Collecting and analyzing user information. The user
information describes different aspects of a user, such
as user contexts. The user information can be the
key factors for ranking an ideal list of user inputs
for parameters. To exploit such information, we first
capture and analyze such information.

3) Ranking values for filling in operations of services.
When a user needs provide a value to an input
parameter of a service during a service composition,
a list of possible user inputs should be ranked to
aid users in selecting the most suitable value to the
input parameter. We propose a learning-to-rank based
approach using five ranking features constructed from
user features to rank the user inputs.

A. Collecting and Storing User Inputs from Users with
Contextual Information

To help users fill in values to input parameters under
different contexts, we need a mechanism to organize and
store user inputs efficiently. We propose a context-aware
meta-data model for storing and organizing user inputs.

Figure 2: Description of context-aware meta-data model
1) Context-aware meta-data model of user input: Fig-

ure 2 shows the description of the proposed context-aware
meta-data model. A user input is associated with two prop-
erties: Type and Input Parameter. The Type property records
the data type of the user input. An Input Parameter property
has two properties: Task and Input property.

3. http://www.w3.org/TR/wsdl



Task Property: A Task property has five sub-properties
to store textual description and contextual information of a
task where the input parameter is entered with a user input.
The five sub-properties are listed as follows:

• What stores the information of what a task is. This
property has three sub-properties:

– Name records the name of a task, such as the name
of an operation in WSDL, the resource name and
its associated actions of a RESTful service, and a
web label (e.g., from a web form or HTML tag).

– Text stores the description of a task. A task de-
scription is retrieved from the description of an
operation in WSDL, the web page introducing a
resource and its associated actions in a RESTful
service, or textual information of a web form. The
value of this property can be NULL.

– Service records the name of a service where the
task is performed. The value of this property can
be the name of a WSDL, RESTful service, or the
URL of a web form.

• When records the time when a task is performed by a
user. The time can be obtained from the user’s operating
system.

• Where remembers the physical locations and comput-
ing devices of a user where he or she performs a task.
The physical locations can be retrieved and calculated
from IP or GPS (e.g., Mobile devices).

• Who stores the identity of a user who performs the task.
The way of obtaining the identity is dependent on the
implementation choices. For example, the value of this
property can be obtained from user profiles.

• Whom records the information whom a task is per-
formed for. The value of Whom can be equal to the
one of Who. For example, a user buys a phone for
himself or herself. The way of obtaining the social
relation between Who and Whom is dependent on the
implementation choices. For example, a relation can be
retrieved from social networks, such as Facebook4.

Input Property: An Input property stores the textual infor-
mation of an input parameter, and has three sub-properties:
label, name, and id. The textual information is mined from
coding information. In web applications, label, name, and
id are the attributes of the HTML DOM elements defining
the input fields consuming user inputs. In the context of
WSDL and RESTful services, we store the name of the input
parameter in the label property.

For each property stored in the context-aware mete-
data model, we conduct word normalization to identify
meaningful words. We decompose any possible compound
words (e.g., FindCity) following the conventions used in
programming languages. We use four rules to decompose
words: case change (e.g., FindCity), suffix containing a
numeric number (e.g., City1), underscore separator (e.g.,

departure city) and dash separator (e.g., Find-city). We use
WordNet5 a lexical database to remove non-English words.
We remove stop words using a pre-defined list of stop words,
such as “the”. Finally, we use porter stemmer [13] to reduce
derived words to their stem, base, or root form.

2) Collecting user inputs and their contexts: Nowadays,
electronic devices, such as mobile devices, are indispensable
in people’s life. A massive amount of user activities can be
conducted using these electronic devices. For example, the
users can conduct web activities or web service testing on
PC or mobile devices. The users can shop a pair of shoes on
Ebay6 or register a course by filling in university registration
web forms. The users can operate a simple RESTful web
service testing using its URL through web browsers, or a
SOAP-based WSDL service through SOAPUI framework7.
The user inputs can be collected through such a massive
amount of user activities.

We collect user inputs through users’ web activities. We
modify the tool used in [14] to collect user inputs. The
original tool in [14] extends a web testing tool named
Sahi 8 to monitor users’ web activities and collect the user
inputs. In this paper, we extend the original tool to include
contextual information, such as time and location, of the
interactions between user inputs and input parameters. We
store the user inputs with their property information in the
proposed context-aware meta-data model.

B. Collecting and Analyzing User Information

To aid users in filling values to input parameters under
different circumstances, it is essential to understand the
dynamicity of users’ needs. We propose a user model
to describe different aspects of a user. We analyze user
information (e.g., current user contexts and social relations)
to discover the changes of users’ needs. Our user model has
five aspects are listed as follows:

• User Profile. A user profile contains a set of pieces
of personal information, such as name, home address
and credit card information. The number of entries
in a user profile can be various based on different
definitions or implementations. In this paper, we only
include the basic personal information which is user’s
real name, residency address, phone numbers, credit
card information, date of birth, and email addresses.

• User Past Activities. This aspect records all the past
performed tasks by a user. Each activity entry stores the
tasks, the services composed to accomplish the tasks,
input parameters entered with values, and the entered
user inputs.

4. https://www.facebook.com/
5. http://wordnet.princeton.edu/
6. http://www.ebay.com
7. http://www.soapui.org/
8. http://sahi.co.in/



• User Social Relations. This aspect stores the social
relations among users. The relations, such as husband
to wife, can be directly extracted from social network
platforms. Knowing the relations among users could
improve input parameter filling process. For example,
sending a postcard to a co-worker is a common task.
The co-worker’s home address and phone number can
be auto-filled into a service where the input parameters
requiring shipping address.

• User Contexts. The definitions of user contexts are
varied from different academic studies. We adopt the
definition and taxonomy of user contexts in [15]. We
discover four types of user contexts: time, location,
identity and activity, useful for recommending values to
input parameters. For example, a user may only check
his or her account balance at home.

• User’s Current Typing. Before a user finishes typing
his or her intended value into an input parameter,
the unfinished typing could be a perfect indicator for
discovering the intended value. During the course of
value typing, a user should be recommended with a
set of ranked values based on the typing which are
dynamically changing.

The aspects, User Profile and User Past Activities, are
the main sources for providing values to input parameters.
The aspect, User Social Relations, links the different users.
More importantly, the aspects, User Social Relations, User
Contexts and User’s Current Typing, can be used for
locating a suitable value for an input parameter.

C. Ranking and Recommending values to users for filling in
operations of services

In this section, we first summarize four scenarios of how
a user interacts with input parameters and how a user can be
helped with the auto-filling techniques, when a user tries to
supply values to input parameters of a service participating
in a service composition. Then, we introduce our approach
that ranks and recommends values to users.

1) Scenarios of user-parameter interactions: The four
scenarios are listed as follows:
• Scenario 1. An input parameter is pre-filled with a value

when no typing action is performed from a user.
• Scenario 2. A user is not satisfied with a pre-filled

value. The user would remove the pre-filled value, then
start typing a new value. Before the typing starts, a list
of ranked values should be recommended to the user.

• Scenario 3. No value is selected by a user from
the recommended list of values, then the user starts
typing a new value. A list of ranked values should be
recommended based on what the user is typing.

• Scenario 4. No previous user inputs are suitable for
recommendation. The user has to type in a value.

Our proposed context-aware ranking approach helps users
in Scenario 1, Scenario 2 and Scenario 3. Especially, our

approach can maximize the help for users in Scenario 1 and
Scenario 2 which requiring users to type.

2) Context-aware ranking of user inputs: To help a user
fill in an input parameter P , we recommend a list of ranked
previous user inputs. All the user inputs are stored in the
proposed context-aware meta-data model (Section III-A1).
We propose a learning-to-rank model based approach incor-
porating the user information as features to recommend a
personalized list of previous user inputs to users.

Model Formulation: A learning-to-rank (LTR) task has
training and testing phrases. Given a set of queries Q =
{q1, q2, . . . qm}, where m is the number of queries. Each
query qi (1 ≤ i ≤ m) is mapped to a list of documents
Di = {di1, di2, . . . , din}, where dij denotes the jth docu-
ment. Each list of documents Di is mapped to a list of
relevance judgments Y i = {yi1, yi2, . . . , yin}, where yij is the
relevance judgment on document dij with respect to query
qi. For each query-document pair (qi, dij), a feature vector
is created. Features are defined as functions of a query-
document pair. The learning task is to automatically learn
a function F (x) given a training data. The feature vectors
are ranked according to F (x), then the top K results are
evaluated using their corresponding relevance judgments.
Learning-to-rank approaches can be modified and developed
into settings where no training data is available before
deployment [16]. Compared with the conventional ranking
models (e.g., Bayesian Belief Networks [17] based ranking
model), LTR models automatically learn and combine dif-
ferent factors affecting a ranking to suggest the ideal ranked
list. We formulate the input parameter filling task into a
LTR task. An input parameter and a previous user input are
viewed as a query and a document respectively. The value
of the relevance judgment on a user input I with respect to
an input parameter P can only be 0 or 1, where 1 means I is
perfect for filling in P and 0 means the opposite. We adopt a
state-of-the-art LTR model, RankSVM [10] a pairwise LTR
approach, to rank the possible user inputs.

Ranking Features: We propose five ranking features
derived from our proposed user model.

Ranking Feature 1 - Textual Similarity: A previous user
input sharing the most textual similarity value with the input
parameter could be the right value and selected by the
user. This ranking feature is based on the textual similarity
between a user input and an input parameter.

Given a user input I and an input parameter P , we traverse
all the input parameter properties (ipps) of the user input
I . For each ipp, we calculate the similarity between the
input property of the ipp and the textual information of the
input parameter P . The input property of an ipp (denoted
as I(inp{ipp})) and the textual information of the input
parameter P (denoted as P (text)) can have more than one
word (e.g., “book flight”). We formulate I(inp{ipp}) and
P (text)) into a bag of words, bag = {W1,W2, . . . ,Wn},
where n is the number of words in a bag. We use WordNet



to calculate the semantic similarity between two bags bagi
and bagj (i 6= j) in the following cases:

Case 1. We first identify common words (i.e., two words
are identical or synonymous) of two bags. If all of the words
from two bags are same, then bagi=bagj . If bagi has more
words than bagj does, and all of the words in bagj are also in
bagi, we use Equation (1) to calculate the similarity between
two bags.

sim(bagi, bagj) =
|bagi ∩ bagj |
|bagj |

(1)

where sim(bagi, bagj) denotes the semantic similarity value
between bagi and bagj , bagj ⊂ bagi.

Case 2. If bagj and bagi are not contained by each other,
we count the number of pairs of common words in two bags.
Second, we calculate the semantic similarity between every
pair of words W i

a (W i
a ⊂ bagi) and W j

b (W j
b ⊂ bagj) of two

bags after removing the common words from calculation.
Then, we add up all of the similarity values of pairs of words,
denoted as Simsum =

∑
W i

a⊂bagi
∑

W j
b⊂bagj

sim(W i
a, W j

b ),

where sim(W i
a, W j

b ) denotes the similarity value between
two words; W i

a 6= W j
b . Last, we use Equation (2) to

calculate the similarity between two bags. The numerator of
the equation is to calculate the similarity between each pair
of words of two bags; the denominator is the total number
of times of calculating the similarity between words.

sim(bagi, bagj) =

|bagi
⋂
bagj |+ Simsum

|bagi
⋂
bagj |+ |pairs of nonidentical words|

(2)

where sim(bagi, bagj) denotes the semantic similarity value
between bagi and bagj . |bagi

⋂
bagj | states the number of

pairs of common words of bagi and bagj . Simsum is the
sum of the similar value of every pair of words excluding
the common words from bagi and bagj .

In total, we obtain a set of textual similarity values
between the input parameter properties of user inputs and
current input parameter P . We choose the highest value as
the score for the proposed ranking feature.

Ranking Feature 2 - Task Similarity: If one of the tasks
associated with a user input can match the current task being
performed by a user, the user input could be selected by
the user. A task is an operation in WSDL services, or a
resource and its associated action if applicable (e.g., update)
or a web form of a web application. We propose one ranking
feature based on the similarity between previous tasks and
the current task.

Given a set of input parameter properties (ipps) of a
user input I and a current task, we calculate the textual
similarity between the task property of each ipp ( denoted
as tp{ipp} ) and the current task. Each tp{ipp} has a
what property describing the information of a task; each
what property has three sub-properties: name ( denoted
as n(what{tp{ipp}})) storing task name, text ( denoted as

t(what{tp{ipp}})) storing task description and service ( de-
noted as s(what{tp{ipp}})) storing the name of a service
where the task is performed as proposed in Section III-A1.
We extract the name, description and service name of current
task, denoted as nct, tct and sct respectively. We adopt
the approach of calculating similarity between properties in
Ranking Feature 1 to calculate the following three similar-
ities: sim(n(what{tp{ipp}}), nct), sim(t(what{tp{ipp}}), tct)
and sim(s(what{tp{ipp}}), sct). We use Equation 3 to cal-
culate the similarity between a previously stored task (pt)
and the current task (denoted as ct).

sim(pk, ct) = a ∗ sim(n(what{tp{ipp}}), nct)+

b ∗ sim(t(what{tp{ipp}}), tct) + c ∗ sim(s(what{tp{ipp}}), sct)
(3)

where a, b, c are weights for similarity calculation. a, b and
c have same value (i.e., 1/3) derived empirically.

In total, we obtain a set of similarity values. We choose the
highest value as the score for the proposed ranking feature.

Ranking Feature 3 - Contextual Similarity: The contexts
associated with the interactions between user inputs and
input parameters are important for recommendation. Given
an input parameter and current user contexts, we identify the
user inputs whose contexts matches current user contexts. A
context can be a location or device where a user enters a
value to a service. In the context-aware model of user input
(Section III-A1), every user input is associated with time,
location (i.e., physical location and computing device), who
performed a task and for whom. Each input parameter P
to user input I interaction can be modeled into a tuple
T = {P,Cip−ui, I}, Cip−ui = {ci, c2, . . . , ct}, where
Cip−ui is a set of contexts recorded during interactions, t
is the number of contexts. We conduct context abstraction
process [18], critical for context-aware recommendation, to
transform the numerical values into categorical ones. We
skip the detail introduction of the process due to page limit.

Given a set of tuples of P to I interactions and a set
of current user contexts Cct = {cct1 , cct2 , . . . , cctm} (m is the
number of contexts, m ≤ t), we use the following steps to
calculate the possibility of using a user input under current
user contexts: First, we calculate the similarity between Cct

and the set of contexts (denoted as Cip−ui) of every tuple,
denoted as sim(Cct, Cip−ui). We turn the Cct and all of
the sets of contexts of tuples into bag of words. We use
term frequency and inverse document frequency (tf-idf) [19]
to weight each word and turn Cct and every Cip−ui into
a vector. Second, we use cosine similarity algorithm [20]
to calculate the similarity value of sim(Cct, Cip−ui). Our
model is extensible with more types of contexts which could
potentially affect ranking.

Ranking Feature 4 - Frequency: The ranking feature is
built on the number of times a user input is provided to an
input parameter. We mine the frequency of a user input to



an input parameter interaction from the context-aware meta-
data model of user input.

Ranking Feature 5 - Current Typing: The ranking feature
is based on what a user is currently typing into an input
parameter. To rank user inputs dynamically, the user inputs
should contain what he or she types in as a prefix.

The five ranking features are designed for ranking previ-
ous user inputs in Scenario 1, 2 and 3 of user-parameter
interactions. The feature 5 (i.e., Current Typing) is special-
ized for Scenario 3 of user-parameter interactions.

IV. CASE STUDY

We introduce our dataset and two research questions. For
each question, we present the motivation of the question, the
analysis approach and our findings.
A. Case Study Setup

We conducted our study on three types of services: WSDL
services, RESTful services, and web applications (i.e., web
forms). The RESTful services are described in web pages.

Table I: Our collection of public services.

Domain # of WSDL # of REST # of Web forms

Travel 215 30 50
E-commerce 190 30 50
Finance 135 30 50
Entertainment 100 30 50

We collect 640 public available WSDL files. We use pro-
grammableWeb9 to collect 120 URLs of RESTful services
and download the web pages containing the APIs. We manu-
ally collect the information related to RESTful services, such
as the description of resources and input parameters. We use
Google to search for websites to download web forms. We
choose websites listed on the top of the Google results. In
total we download 200 Web forms. The total 960 services
fall into 4 domains: Travel (e.g., book flights), E-commerce
(e.g., buy shoes), Finance (e.g., check a stock price) and
Entertainment (e.g., search TV shows). Table I provides a
summary of the dataset used in our case study. In total,
we collect 11127, 792, 1024 input parameters from WSDL,
Restful, and Web application services respectively.

User input collection: To evaluate the effectiveness of our
learning-to-reuse approach, we collect a set of recorded user
inputs through our input collector (Section III-A). We recruit
6 subjects who are graduate students and typically spend 8-
10 hours on-line per day to use the input collector tool to
track their inputs on web forms. When the subjects conduct a
task, we require them to enter whom the task is performed
for. The social relation between subject and whom his or
her task targets for can be retrieved from different social
platforms. Since all of the collected user inputs are stored
in context-aware model of user inputs (Section III-A1), the
relations between input parameters and user inputs (denoted
as ip-ui interactions) are established. The ranking feature 5
(i.e., current typing) requires a set of incomplete user inputs

as the user current typing. The longer an incomplete input
is, the easier identifying a suitable user input is, because the
incomplete input is the pre-fix of the suitable user input. We
extract the first character of a user input as the user current
typing. In total, we collect 12584 cases of ip-ui interactions.
For each case, we calculate the feature values for all the five
features. We refer this dataset as auto-data.

Manually-labeled training dataset: To test our approach
on the collected services, we need create the training dataset
in the following steps. First, we sample input parameters
of each type service with the confidence level 95% [21]
so that we can manually judge the relevance between a
user input and an input parameter. Second, for each input
parameter, we retrieve a list of user inputs whose textual
information matches the textual information of the input
parameter. Third, we judge the relevance of a user input to
the input parameter. There are three degrees of relevance: 1
(i.e., best value for the input parameter), 0 (i.e., not suitable
for the input parameter) and not sure. We calculate the
feature values for all the five ranking features. We use the
same approach used in auto-data to build values for feature
5. We refer the dataset as manually-labeled-data.
B. Research Questions

We conduct experiments to measure the effectiveness of
our approach and answer the following research questions.

RQ 1. Is the proposed ranking approach effective in
ranking user inputs?

Motivation. Ranking user inputs to input parameters of
services is an essential step to save users from repetitive
typing. Ideally, the top-1 value of a ranked list is for input
parameter pre-filling and the rest is for recommendation if
a user is not satisfied with the pre-filled value. The ranking
can be adjusted and adapted to the dynamic changes of user
contexts. In this question, we evaluate the effectiveness of
our learning-to-reuse approach in ranking inputs.

Approach. We build two baseline approaches. The first
baseline ranks user inputs based on the frequencies of
user inputs, denoted as Rank-F. The use input with the
highest frequency ranks on the top. The second baseline
is a Bayesian Belief Network (BBN) [17] based ranking
approach, denoted as Rank-BBN. Given an input parameter
and a set of user contexts, we build a vector of 5 dimensions
(i.e., 5 ranking features in Section III-C2) for each user input
in Rank-BBN. The vectors of user inputs are used to build
a BBN. The output node is the probability of a user input
being used for an input parameter. The probabilities of user
inputs are used by Rank-BBN for ranking.

We conduct our experiment in the following steps: First,
we apply Rank-F, Rank-BBN and our learning-to-reuse ap-
proach (denoted as Rank-Reuse) on auto-data and manu-
ally labeled data. We exclude the data labeled with “not
sure” from our analysis. Second, we exclude the ranking

9. http://www.programmableweb.com/



feature 5 from both datasets and repeat the first step to
verify the effectiveness of our approach on aiding users in
Scenario 1 and 2 of user-parameter interactions proposed
in Section III-C1. Third, both Rank-BBN and Rank-Reuse
require training datasets. We follow the same data splitting
strategy in [22]. We use half of a dataset for training and
validation, and the remaining half for testing. Last, given a
set of input parameters P1, P2, . . . , Pn (n is the number of
input parameters), we use Equation (4) and Equation (5) to
measure k-precision and k-recall for recommending a list of
user inputs to Pi (0 < i ≤ n). We use Equation (6) and
Equation (7) to calculate the average precision and recall.

k − precisioni =
|Correct Inputs in top k results|

k
(4)

k − recalli =
|Correct Inputs in top k results|

|Correct Input|
(5)

where | Correct Input | is a constant and = 1, be-
cause there can only be one correct input for a Pi. |
Correct Inputs in top k results | = (1 or 0). When k=1,
k-precisioni= k-recalli.

avg − k − precision =

∑n
i=1(k − precisioni)

n
(6)

avg − k − recall =

∑n
i=1(k − recalli)

n
(7)

Table II: Performance of different approaches with different k
values on manually-labeled-data without ranking feature 5. P and
R stand for average precision and recall respectively.

Approach
WSDL REST Web Forms

P(%) R(%) P(%) R(%) P(%) R(%)
Rank-Reuse (k=1) 82 82 85 85 81 81
Rank-BBN (k=1) 58 58 55 55 62 62
Rank-F (k=1) 42 42 46 46 40 40
Rank-Reuse (k=3) 29 87 30 90 28 84
Rank-BBN (k=3) 23 69 21 63 20 60
Rank-F (k=3) 17 51 19 57 15 45
Rank-Reuse (k=5) 18 90 19 95 18 90
Rank-BBN (k=5) 14 70 13 65 14 70
Rank-F (k=5) 11 55 12 60 10 50

Table III: Performance of different approaches with different k
values on auto-data without ranking feature 5. P and R stand for
average precision and recall respectively.

Approach
k=1 k=3 k=5

P(%) R(%) P(%) R(%) P(%) R(%)
Rank-Reuse 84 84 30 90 19 95
Rank-BBN 65 65 23 69 14 70
Rank-F 43 43 15 45 11 55

Results. Table II and Table III show that our approach
Rank-Reuse outperforms Rank-BNN and Rank-F in the
Scenarios 1 and 2 of user-parameter interactions on both
datasets. More specifically, Rank-Reuse achieves an average
top-1 precision of 83% and top-1 recall of 83%. In most
cases, the users can be saved from repetitive typing without
taking actions using our Rank-Reuse. Furthermore, the high
top-3 and top-5 recalls of Rank-Reuse suggest that users

can identify a proper user input within top-3 or top-5
ranked values, when the users are not satisfied with the
top-1 value.Moreover, the results of Table II and Table III
show that automatically collected data can achieve the same
level of results as the manually-labeled-data. Furthermore,
our results of using Rank-Reuse, Rank-BNN and Rank-F
on auto-data and manually-labeled-data including ranking
feature 5 (i.e., using one character as current typing) show
that on average, the results of Rank-Reuse and Rank-BNN
can be improved by 11%.

RQ 2. Which ranking features affect the ranking most?
Motivation. We investigate the effect of various features

used to rank previous user inputs and discover the most
influential features in ranking.

Approach. To test a feature, we first exclude the tested
feature from our learning model. Second, we apply Rank-
Reuse on auto-data. Third, we use Equation (6) and Equa-
tion (7) to calculate the average precision and recall for our
approach. Last, we test 5 ranking features and compare the
results with the ones of RQ1 to identify the effect of different
features on ranking.

Furthermore, the ranking feature 3 of contexts is built on
a set of contextual variables, such as location and time. To
identify which contextual variables have a bigger influence
on ranking, we build a new ranking feature for each type of
contexts. The first feature is based on time; the second one is
based on location having two contextual variables (physical
locations and devices); the third one is derived from social
relations having two contextual variables (who and whom).
We use the same above approach of testing a feature to test
the new three features.
Table IV: Effects of different types of ranking features on user
input ranking. d-P and d-R stand for the decrease in average
precision and recall respectively.

Test Feature
k=1 k=3 k=5

d-P d-R d-P d-R d-P d-R
1 Textual 22% 22% 9% 27% 7% 35%
2 Task 7% 7% 4% 12% 4% 20%
3 Context 14% 14% 7% 21% 5% 25%
4 Frequency 5% 5% 4% 12% 3% 15%
5-Typing 11% 11% 3% 9% 2% 10%

Results. Table IV shows the effects of ranking features.
The percentages in Table IV mean the decreases in the
performance of Rank-Reuse without using the test feature.
The bigger the percentage is, the bigger effect a ranking
feature has. Without using ranking feature 1, the perfor-
mance of our approach decreases most (e.g., 22%-off in
top-1 precision) compared with other features. Furthermore,
we observe that compared with other types of contextual
information, location information affects the ranking most.

V. RELATED WORK

In this section, we summarize the related work on assign-
ing values to services, context model of web services and
learning-to-rank models.



Industrial tools such as Chrome Autofill forms [2] and
Firefox Autofill Forms [3] help users fill in forms. Robo-
Form [23] and LastPass [24] are designed for password man-
agement and provide form auto-filling function. Academic
studies (e.g., [6], [14]) propose approaches for assigning
values to parameters of services. AbuJarour et al. [6] gen-
erate annotations for web services and automatically assign
values for input parameters of web services. Wang et al. [14]
propose an automatic approach to reuse user inputs among
different services by linking similar parameters and pre-
filling user inputs. Our Rank-Reuse can be a supplement
and enhancement to Wang et al. [14] approach.

The studies (e.g., [16],[10]) propose learning-to-rank
(LTR) based approaches to optimize search engines to
recommend relevant documents to users. Our Rank-Reuse
adopts the LTR and optimize input parameter filling process.

Mrissa et al. [25] propose a context model for composing
services. Blake et al. [26] propose a context model con-
taining user’s contextual information for identifying relevant
services to users. However these proposed context models
are not designed for reusing user inputs.

VI. CONCLUSION

Unnecessary interruptions caused by repetitively typing
same information to services decreases the efficiency of ser-
vice composition and negatively impacts the user experience.
In this paper, we propose a context-aware model for storing
user inputs efficiently. We analyze four scenarios of user-
parameter interactions and propose a context-aware learning-
to-rank model based approach (Rank-Reuse) to pre-fill and
recommend values to input parameters. Our approach learns
the interactions with contextual data between user inputs
and input parameters over time to reuse the user inputs for
filling values to input parameters. Our empirical results show
that our context-aware learning-to-reuse ranking approach
outperforms two baseline approaches (i.e., Bayesian Belief
Network and Frequency based approaches). We observe that
textual similarity based ranking feature affects the ranking
most compared with other features. Among various types
of contextual data, the location information (i.e., physical
locations and devices) matters the most to ranking.
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