
1

An Automatic Approach for Extracting Process Knowledge from the
Web

Hua Xiao

School of Computing
Queen’s University

Kingston, Ontario, Canada
huaxiao@cs.queensu.ca

Bipin Upadhyaya, Foutse Khomh, Ying Zou

Dept. of Electrical and Computer Engineering
Queen’s University

Kingston, Ontario, Canada
{ 9bu, foutse.khomh, ying.zou}@queensu.ca

Joanna Ng, Alex Lau

IBM Canada Laboratory
Markham, Ontario, Canada

{jwng, alexlau}@ca.ibm.com

Abstract— Process knowledge, such as tasks involved in a
process and the control flow and data flow among tasks, is
critical for designing business processes. Such process
knowledge enables service composition which integrates
different services to implement business processes. In the
current state of practice, business processes are primarily
designed by experienced business analysts who have extensive
process knowledge. It is challenging for novice business
analysts and non-professional end-users to identify a complete
set of services to orchestrate a well-defined business process
due to the lack of process knowledge. In this paper, we propose
an approach to extract process knowledge from existing
commercial applications on the Web. Our approach uses a
Web search engine to find websites containing process
knowledge on the Internet. By analyzing the content and the
structure of relevant websites, we extract the process
knowledge from various websites and merge the process
knowledge to generate an integrated ontology with rich process
knowledge. We conduct a case study to compare our approach
with a tool that extracts ontologies from textual sources. The
result of the case study shows that our approach can extract
process knowledge from online applications with higher
precision and recall comparing to the ontology learning tool.

Keywords-Process knowledge acquisition, ontology, business
process

I. INTRODUCTION
A business process is a set of logically related tasks that

are linked by control flows and data flows to achieve given
objectives. For example, “planning a trip for travelers” is a
typical business process for travel agencies. The process
contains tasks, such as “booking flight tickets”, “searching
for a map of the destination”, and “reserving a hotel”. A task
in a business process is the lowest level of details to describe
an operation. A sub-process describes a collection of tasks
that can be reused in different contexts. Process knowledge,
such as tasks involved in a process and the control flow and
data flow among tasks, is critical for designing business
processes. Such process knowledge enables service
composition which integrates different services to implement
business processes. Different tools are available for both
professional and non-professional users to support service
composition. Professional service composition tools, such as
IBM WebSphere Integration Developer (WID) [18] and
Oracle BPEL process Manager [20], provide a platform for
business analysts and developers to build business processes
by composing services. Lightweight service composition
tools, such as IBM Mashup Center [17] and iGoogle [13],

are provided to users at various skill levels to assemble
online applications into a new application (e.g., a business
process). However, in the current state of practices, business
processes are primarily designed by experienced business
analysts who have extensive domain knowledge. It is
challenging for novice business analysts and non-
professional end-users to identify a complete set of services
to orchestrate a well-defined business process due to the lack
of process knowledge.

Research efforts have been devoted to sharing knowledge
in public. Several knowledge bases are designed to allow
machines to retrieve and process the knowledge stored in the
knowledge bases. Ontologies use a formal way to represent
knowledge as a set of concepts and relationships among the
concepts. For example, the ontology of “travel” lists relevant
concepts, such as “booking flight tickets”, “hotel
reservation”, and “weather forecast”. Ontologies are widely
used for knowledge representation and sharing. DBpedia [5]
and Freebase [9] are examples of knowledge bases that
extract the knowledge from Wikipedia [29] and store it using
Ontologies. Information extraction tools, such as Text2Onto
[6], can extract ontologies from textual resources, such as
text files or Web pages. However, existing knowledge bases
and tools focuses on explaining high level concepts into
more concrete concepts. Such knowledge description is lack
of a stepwise description on how to complete a collection of
tasks to achieve an objective. Moreover, Websites, such as
on-line stores, and travel agencies provide specialized
services to users. Such websites capture domain specific
process knowledge and assist users in completing tasks
following the embedded business processes. For example,
expedia.com provides interactive user interfaces to allow
users to complete various tasks in a trip planning process
including tasks such as “buying flight tickets”, “booking
hotels” and “purchasing travel insurance”.

To leverage the domain knowledge embedded in
specialized websites, we propose an approach to extract the
process knowledge from such websites. Our approach
attempts to make the process knowledge available for non-
expert users to use in service composition. More specifically,
we analyze the navigation information in a website to
identify the tasks needed for completing an embedded
process. To provide comprehensive process knowledge for
achieving an objective, our approach merges the process
knowledge extracted from multiple websites that serve for
the same objective (e.g., travel planning). Generally, the
extracted process knowledge in our paper is the knowledge
of business processes instead of executable or abstract

2

business processes. Business process specification
languages, such as BPEL [27] and BPMN [3], are designed
to describe executable or abstract business processes and are
not suitable for representing the extracted process
knowledge. In our work, we use ontologies to represent the
extracted process knowledge.

The remainder of this paper is organized as follows.
Section 2 presents a meta-model to describe websites and a
background on ontologies. Section 3 gives an overview of
our approach that extracts process knowledge from multiple
websites. Section 4 discusses the case studies. Section 5
gives an overview of related work. Finally, Section 6
concludes the paper and presents the future work.

II. META-MODEL FOR WEBSITES AND STRUCTURE OF
ONTOLOGIES

A. A Meta-model for Websites

target

1

1

Menu

Web Page

10..*
2…*

LabelMenu Item

Website

Form

1

10..*

URI

1..*

1

0..*

1

0..*

10..*1

0..*

1

1 1

*

* 1

1

0..*

Figure 1. A meta-model for websites

 Due to the diversity in the design and implementation
of various websites, the appearance of the same
information can be presented differently in various
websites. For example, the navigation information (i.e.,
the menu) of a website can be described as a table, a list,
or parallel paragraphs with different fonts and sizes. To
deal with such diversity in the website design and
implementation, we summarize the common structures
of websites using the meta-model shown in Figure 1.
 Generally, a website contains a collection of related
Web pages. Each Web page has a Uniform Resource

…

Form

URL

Menu

Menu Associated Code

URL Linked
Page

URL Linked
Page

URL Linked
Page

URL

URL

URL

Code for a
Menu Item

Code for a
Menu Item

Code for a
Menu Item

Figure 2. An example of a Web page

Locator (URL) to indicate the address of the Web page on
the Internet. Forms in a Web page are used to collect inputs
from users. A menu is intended to guide users to navigate
through different Web pages in the website. More
specifically, a menu contains a group of menu items that
link to different Web pages where a user can conduct tasks,
such as select a product. Each menu item contains a label
and a URL. The label shows the name of a menu item, and
the URL is a link to a Web page. Menus can be
implemented in different ways, such as HTML table [23],
HTML list [23] or a set of sequential HTML hyperlinks.
Figure 2 illustrates an example of website with a menu. The
menu is represented using HTML list tags, i.e., …
 … … . Essentially, the menu items
indicate a set of tasks that a user needs to perform in order
to complete one or more processes. The process knowledge
can be captured in the menus.

B. Structure of Ontologies
Ontologies can be formally described using ontology

specification languages, such as Web Ontology Language
(OWL) [24] and Resource Description Framework (RDF) [2].
Regardless of ontology specification languages, ontologies
contain the following major components.
• Class: is an abstract description of a group of resources

with similar characteristics.
• Individual: is an instance of a class.
• Property: describes an attribute of a class or an individual
• Relation: defines ways in which classes and individuals

can be related to one another. Typical relations include
subclass, partOf, complement, intersection and equivalent.
Subclass extends a class to convey more concrete
knowledge. PartOf relation indicates that a class is a part
of another class. Class A is a child of class B, if class A is
a subclass of B or class A is a partOf B. A complement of
a given class refers to another class which contains all the
members that do not belong to the given class.
Intersection contains the members shared among multiple
classes. Equivalent defines that two classes contain
exactly the same set of individuals.

III. AN APPROACH TO EXTRACT PROCESS KNOWLEDGE
FROM THE WEB

Figure 3 provides an overview of the steps that extract
process knowledge from Websites. As shown in Figure 3,
The objective of a business process is represented as a goal
that can be described using a phrase or a set of keywords,
such as “travel” and “apply credit cards”. We submit the
goal to an existing Web search engine, such as Google, to
find relevant websites. However, not all the websites
returned from a search engine encode rich process
knowledge. In our approach, we analyze the navigation
information of websites and then use the navigation
information to select the websites with desired process
knowledge. In a selected website, we analyze the identified
menu to recover sub-processes from the menu. We also

3

Webpage
WebpageWebsite

Search Related
Websites

(e.g., Using Google)
Goal Identify Menus

WordNet

Extract Process Knowledge
from each Website

Internet

Integrate Process
Knowledge

Webpage
WebpageProcess
Knowledge
(Ontology)

Process
Knowledge
(Ontology)

Document Process

Database Legend

Figure 3. An overview of our approach

capture the tasks and properties of the sub-processes. Finally,
we integrate the process knowledge extracted from different
websites to form a more comprehensive ontology that
elaborates process knowledge of a given goal.

A. Identifying a Menu from a Website

Function: identify_menu
Input: HTML code of a Web page
Output: a list of identified menu
1. Remove advertisements;
2. curr_node = root node of the input HTML;
3. queue = empty;
4. queue.push(curr_node);
5. while(queue is not empty){
6. curr_node = queue.pop();
7. if (curr_node has children){
8. child_list = children node of curr_node;
9. }
10. else { continue;}
11. if(child_list satisfies the features of menu items){
12. add children to the identified menu list;
13. }
14. else {
15. add the nodes in child_list to queue;
16. }
17.}//End the while loop
18. Output the identified menu list;

Figure 4. Algorithm to identify menu items

We propose an algorithm as shown in Figure 4 to
describe the steps for identifying menus in a website. A Web
page often contains advertisements irrelevant to the objective
of the website. To filter out such noises, we apply the
approach proposed by Gupta et al. [8] by manually
registering the URLs of the well-known advertisement
service providers. We parse the HTML document of a Web
page to analyze the values of “src” and “href” attributes in a
HTML node. We remove the HTML nodes, if the source or
hyperlink (i.e., “src” or “href”) attributes of the HTML nodes
refer to common advertisement servers. From line 4 to line
16 in Figure 4, our algorithm traverses the tree structure of a
HTML document from the root node “<HTML>” using
breadth-first search algorithm. The queue data structure is
used as an assistant data structure to facilitate the tree
traversal. Initially, the root of a HTML document (i.e.,
<HTML> tag) is pushed into the queue. When the queue is
not empty, a node is dequeued for further analysis. When we
analyze a node, if we find that the node is not a menu, we
push the children of the node into the queue.

We identify a menu from a HTML node if the child
nodes of the HTML node are identified as menu items, i.e.,
the child nodes of the HTML node satisfy the following
features:

• Menu items are sibling HTML nodes with identical
HTML structures. For example as shown in Figure 2, each
menu item is an element of the HTML list tag, i.e.,
….

• A set of menu items are encapsulated by the same parent
HTML tag. In the example shown in Figure 2, the menu
items are encapsulated by the parent HTML tag
….

• A menu item contains a URL with a short descriptive text
(i.e., label) displayed on a Web page. As shown in Figure
2, the URL of a menu item is represented as a HTML href
attribute which links to another Web page. The label of
menu items in the example is surrounded by the HTML
tag ….

• Identical menu items appear in the target Web pages
which are linked by the URLs of menu items. In the
example shown in Figure 2, the target Web page contains
the same navigation menu items.

Input HTML document

<html>
 <body>

 Flights
 Hotels
 Tours

 <script language="javascript">…</script>
 </body>
</html>

html(1)

Queue

body(2)

ul(3)

Step

Figure 5. An example to identify navigation bars

Figure 5 is a simplified example which illustrates the
major steps to identify menus. In step 1, the algorithm pushes
the root node “<html>” into the queue then pop out the first
node in the queue to check if it is a menu. Node “<html>”
cannot be identified as a menu since the child of node
“<html>” does not satisfy the features of menu items i.e., the
child node “<body>” does not have sibling nodes. Therefore,
we push the child nodes of “<html>” into the queue for
further analysis. In step 2, we pop out the next node, i.e.,
node “<body>”, from the queue to check whether it is a
menu. Similarly, the node “<body>” is not a menu since its
child node “” does not have sibling nodes. We add the
child node “” to the queue. In step 3, we pop out the
node “” from the queue. Assuming that this list node
“” appears in all the three linked Web pages, i.e., the
Web pages with URLs of “/flights”, “/hotels”, “/tour” all
contain the same node “”. The children of the list node
satisfy the features of menu items. Therefore, the algorithm
identifies these children as menu items and recognizes the

4

node “” as a menu. At this point, the algorithm is
terminated since the queue is empty.

B. Extracting Ontologies with Process Knowledge
 In this section, we discuss our approach that analyzes the
semantics between the goal and the menus of a website in
order to select the websites with the desired process
knowledge. Then we present our algorithm to extract
process knowledge from each selected website.

1) Selecting Websites that capture process knowledge
Websites usually use a menu to guide a user through each

step of a process. Quite often, a website without menus
provides only simple services without detailed process
knowledge. Such a simple website is filtered out. Moreover,
a website may contain more than one menu. Some menus are
used to represent general information instead of the desired
process knowledge to meet the goal. For example, a menu
which contains menu items “Home”, “Contact”, “About”,
and “Login” are used by many websites. This menu does not
reveal any process knowledge relevant to the goal. In our
paper, we select the Websites that have at least one menu in
a website relevant to the goal. To identify the relevance
between a menu and a goal described by keywords. We
propose a metric, average Semantic similarity degree, to
measure the semantic similarity between a goal and a menu.
We apply the similarity measure proposed by Wu and
Palmer [30] to calculate the similarity degree of words which
are the basic elements of a menu and a user’s goal. Average
semantic similarity degree is the average value of the
semantic similarity degrees between the label of each menu
item and the goal, as defined in Eq. (1):

n

labelgoalsim
SimAverage

n

i
i∑

== 1
),(

_ (1)

Where n is the total number of menu items in the menu, and
labeli represents the label of the i-th menu item.

To ensure that one of the menus in the website is relevant
to the goal, we sort the identified menus based on the
average semantic similarity degree from high to low. If the
highest average semantic similarity degree is greater than a
threshold, such a website is relevant to the goal. Otherwise,
the menus identified from this website are not related to the
goal. Therefore, such a website is filtered out.

2) Extracting Process Knowledge from a Website
 We propose an algorithm to extract process knowledge

from the selected website. As listed in Figure 6, the input of
the algorithm is a goal description, a website (i.e., a
collection of Web pages in a website) which contains process
knowledge, and a set of menus identified from the website.
The extracted process knowledge is represented as an
ontology. The goal description is created as a root class for
the ontology as shown in line 2 in Figure 6. Then the menu
with the highest average semantic similarity degree is
converted into classes which are added to the ontology as
child classes of the root class (as shown in lines 3 and 4).
The remainder menus with lower average similarity degree
may describe the details of a class in the ontology. For the

example of a “travel planning” website, the menu with the
highest average similarity degree may contain a menu item
“flight”. Another menu in the website may contain menu
items such as “business class”, “economy class” and “airport
lounge”. The latter menu provides the detailed information
for the menu item “flight” in the former menu. By comparing
the remainder menu items with the existing classes in the
ontology, we can find the relations between the remainder
menu items and the classes in the ontology. In our algorithm,
if the algorithm identifies a “subclass” or “PartOf” relations
between a menu item from the remainder menus and a class
in the ontology, such a menu item is created as a new class
and added into the ontology.

Function: extract_process_knowledge
Input: G ─ goal description
 W ─ a website with process knowledge
 menu_list ─ menus identified from website W and
 sorted based on average semantic similarity
 degree from high to low
Output: On ─ an ontology with process knowledge
1.{ On = Create an empty ontology;
2. root_class = Create a root class in On using G;
3. curr_menu = the first menu in menu_list;
4. Covert curr_menu to subclasses of root_class;
5. for each menu item in the remainder menu_list {
6. new_class = convert the menu item into a class;
7. Identify relations between new_class and the
 existing classes in On;
8. if(exist a relation between new_class and the
 classes in On){
9. add new_class to On based on the relation;
10. }
11. }//End for loop
12. Extract properties for classes in On;
13. Output ontology On;
14.}

Figure 6. Algorithm to extract the ontology from a website

WordNet is a lexical database which groups words into
sets of synonyms and connects words to each other via
semantic relations. We use WordNet [22] to identify class
relations. The following word relations defined in WordNet
are used to identify class relations.
• Hypernym represents a “kind of” relation. For example,

car is a hypernym of vehicle. hypernym relation is
converted as a subclass relation in the ontology.

• Hyponym means that a word is a super name of another.
For example, vehicle is a hyponym of car. Hyponym is the
inverse of hypernym. In the ontology, super class
indicates hyponym relation.

• Holonym describes whole-part (i.e., partOf) relation. For
example, building is a holonym of window.

• Meronym is the inverse of holonym and represents part-
whole relation. For example, window is a meronym of
building. Meronym relation is converted to PartOf relation
in the ontology.

 WordNet can identify highly semantic related relations,
such as flight is a kind of transportation. However, due to the
lack of domain knowledge, the relations between two words
cannot be recognized when they are related in business
processes without strong semantic relations. For example, in
the process of “travel”, “hotel” can has a partOf relation with

5

“travel”. However, WordNet cannot recognize such
relations. In addition, a business process may use phrases
(i.e., more than one word) to describe tasks or the input and
output of tasks. For example, “first class”, “business class”
and “economy class” could be the input parameters of task
“searching for flight tickets”. WordNet is designed as a
general lexical database and does not have the capability of
recognizing phrases.

As aforementioned, each label in a menu item is
associated with a URL which indicates a path for the Web
page to be retrieved from the server. A path shows the
hierarchical structure for organizing the linked web pages in
different menu items. For example, a “flight” menu item is
linked to www.flightcentre.ca/flights and a “business class”
menu item is connected to www.flightcentre.ca/flights/
business-class. The information related to “business class” is
stored under the directory of “flights”. The organization of
directory structure suggests partOf relations between these
two menus items (i.e., “flight” and “business class”). We
can infer that “business class” is a subclass of “flights” since
the URL of “business class” is in the sub-directory of the
URL of “Flights”.

3) Extracting properties and tasks from associated Web
pages

In the extracted ontology from a website, a class in the
ontology is mapped to a menu item in the website, and
therefore a class is associated to a linked Web page by a
URL. We further analyze the linked Web pages to recover
the properties and children for each class.

TABLE 1 MAP FORM ELEMENTS TO CLASS PROPERTIES
Form element Class properties and relations Name example

Label with
input area

A property of the class

Radio
Buttons

 Class properties with “OR” relation

Checkboxes

Properties of the class

Select list
(drop-down
list)

Class properties with “OR” relation

Title of the
form

Search Flight
Ticket

If the text on the title or submit button
is relevant to the class based on
Semantic similarity degree, we
convert the text of title or submission
button as a subclass of the class, and
put all the extracted properties of the
form as the properties of the subclass.

Submission
Button

HTML forms are often designed to take a user's input in
order to provide a service to the user. In our approach, we
extract the HTML forms from the Web page linked to a class
defined in the extracted ontology, and check if the title and
content of the HTML form is relevant to the class. More
specifically, the label of input fields (e.g., text fields,
password fields and radio buttons) are converted to
properties of the class. Table 1 lists the mapping between the
elements of forms and the properties of classes defined in an
ontology.

C. Integrating Process Knowledge Extracted from Different
Websites

Function: integrate_process_knowledge
Input: G  goal description
 onto_list  Ontologies extracted from different
 related websites
Output: int_onto  an integrated ontology
1.{ Create an empty ontology int_onto;
2. create the root class for int_onto using G;
3. queue = empty;
4. queue.push(root class);
5. while(queue is not empty){
6. curr_class = queue.pop();
7. match_cls_list = find classes that match with
 curr_class from the input ontologies;
8. for each cls in match_cls_list {
9. Integrate properties from cls to curr_class;
10. Add children of cls to curr_class;
11. Push children into the queue;
12. }
13. } //End the while loop
14. output int_onto;
15. }

Figure 7. Algorithm to integrate process knowledge

Each relevant website contains partial information of the
process knowledge. To obtain more complete process
knowledge, we integrate the process knowledge (i.e.,
ontologies) extracted from multiple websites. Figure 7
presents our algorithm that integrates process knowledge. As
a starting point, we use the goal description to create the root
class of the integrated ontology. We gradually add the
knowledge (i.e., classes, properties and relations) from an
extracted ontology into the integrated ontology. We use the
variable curr_class to store the current class that we are
analyzing in the algorithm. As shown from lines 7 to 9 in
Figure 7, starting from the root of the new ontology, we use
the current analyzing class (i.e., represented by curr_class)
to search for the matching classes defined in the input
ontologies. Two classes are matching if the names of these
two classes are the same or synonyms according to
WordNet. The properties of the matching classes may vary
in different ontologies. We merge the properties of the
matching classes to the integrated ontology; so that the
curr_class in the integrated ontology can include all the
properties. As shown in line 10 of Figure 7, we add the child
classes of the matching classes from different input
ontologies to the integrated ontology. We recursively merge
the child classes of the matching class into the integrated
ontology following the conditions listed in Table 2. If a child
class of the matching class does not exist in the integrated
ontology, we insert the child class into the integrated
ontology as a child class of curr_class as shown in the
second row in Table 2. If another class in the integrated
ontology has a subclass or partOf relation with the child class
of the matching class, we insert the child class into the
integrated ontology by adjusting the relations among these
three classes (i.e., curr_class, a_class and child class as
shown in Table 2). More specifically, as shown in the third
row in Table 2, if there exists a class that is the child of
curr_class and is the parent of the child class, then we add
this class as the child of curr_class and the parent of the
child class. The fourth row in Table 2 shows that, if there
exists a class which is the child of both curr_class and the

6

child class, then we add this class as a child of the child
class.

TABLE 2. OPERATIONS TO ADD A CHILD CLASS
Condition Operation

The child class* does not exist in the
integrated ontology

 curr_class

child class
Exist a_class**:

 curr_class

a_class

 a_class

child class

 curr_class

a class

 child class
Exist a_class**:

 curr_class

a_class

a_class

child class

 curr_class

a class

child class

* child class represents the child class of the curr_class;
** a_class is in the integrated ontology

Figure 8 uses an example to illustrate the main idea of the
algorithm that merges two ontologies in a stepwise fashion.
In step 1, we create a root class A using the goal description.
Then we find matching classes from the input ontologies (1)
and (2) where we identify two matching classes for A.
Consequently, we add the properties from the matching
classes to A in the integrated ontology. In steps 2 to 3, we
find the children (i.e., B and C) of A from ontology 1 and
add them into the integrated ontology. In step 4, class C is a
child class of A in ontology 2. However, class C exists in the
integrated ontology. Therefore, instead of adding another
class C to the integrated ontology, we merge the properties
of C from ontology 2 with the properties of C in the
integrated ontology. In step 5, H is a child of A. Assuming
that WordNet database indicates that H is the parent of B, we
add H as a child of A and move B to be the child of H
instead of the child of A.

A

C

A

CB H

Input Ontologies
(1) (2)

A

Step 1

A

Step 2

BC

A

Step 3

B C

A

Step 4

B C

A

From WordNetB C

H

BE

A
H

From Ontology (2)

A

H C

B

Step 5

+

Class from ontology (1) Class from ontology (2) Class from both
ontology (1) and (2)

Figure 8. An example of integrating ontologies

IV. CASE STUDY
The objectives of our case study are to: (1) Evaluate the

quality of the process knowledge extracted from each
website; (2) Evaluate the quality of the integrated process
knowledge.

A. Setup
We gather 10 goals (e.g., plan a trip, buy a car, and find a

job) from two websites: eHow [7] and WikiHow [28] which

use articles and videos to provide online how-to instructions
for fulfilling various goals. The collected goals are from
different domains. To form a business process, each of the
gathered goals needs more than one online service to
achieve. Table 3 lists the goals used in our case study. The
goals are distributed across 10 domains. For each goal, we
use Google [11] as the Web search engine to collect the
websites related to goals by submitting the goal description
(i.e., keywords) to Google. For each query used to search for
relevant websites, we collect the first 8 results and apply our
approach to each result. 8 results are the maximum number
of results that we can get using Google AJAX Search API
[10]. In total, we analyze 80 related websites for 10 goals
and generate 80 ontologies. For each goal, we produce an
integrated ontology to combine the process knowledge
extracted from the 8 websites returned by Google.

TABLE 3. LIST OF GOALS
No. Goal Description domain
1 Apply university Education
2 travel Travel
3 choose a gift Shopping
4 Buy a cell phone Shopping and Electronics
5 Buy a car Shopping and Automobile
6 Buy a house Real estate
7 Find a job Career
8 Tax report Tax
9 Canada health insurance Insurance
10 Apply credit card Finance

B. Evaluating the Quality of Process Knowledge Extracted
from a Single Website
To evaluate the quality of ontologies (i.e., process

knowledge) extracted from each website, it would be ideal if
we could compare our approach with other tools which are
specially designed for extracting process knowledge from
commercial websites. According to the best of our
knowledge, there are no public available tools similar to ours
which can extract process knowledge from public Web pages
without the prior knowledge of the server side source code.
In this case study, we compare the ontologies extracted using
our approach with the ontologies extracted using Text2Onto
[5]. Text2Onto can extract ontologies from unstructured or
semi-structured textual resources. However, the extracted
ontologies from Text2Onto represent all the information
conveyed in the textual resources instead of process
knowledge. Text2Onto is the available tool that is the most
similar to ours.

We apply our approach and Text2Onto tool to extract an
ontology from the same website. We evaluate the
effectiveness of both approaches by measuring the precision
and recall. As shown in Eq (2), the precision is the ratio of
the total number of items correctly extracted by an approach
to the total number of items extracted by the approach.
Recall is the ratio of the total number of items correctly
extracted by an approach to the total number of items existed
in websites.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
|{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖} ∩ {𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}|

|{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}| (2)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
|{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖} ∩ {𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}|

|{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}| (3)

7

To assess the process knowledge extracted from each
website, a subject, who is one of the authors, spent 3 days
manually examining the 80 websites to extract process
knowledge. The subject is a graduate student with 5 years
experience working on business process related projects. His
knowledge and experience on business processes ensure that
he can properly identify the process knowledge from these
websites. To avoid any interference, the results from
text2Onto and our prototype were not disclosed to the
subject before he finished the analysis. We calculate the
precision and recall by comparing the result from text2Onto
and our approach with the result from the subject.

Table 4 lists the recall and precision of our approach and
the Text2Onto tool. The results show that our approach can
effectively extract most of the processes information from
each website. It can achieve a recall of 0.80 and a precision
of 0.82 comparing with Text2Onto which has a recall of 0.35
and a precision of 0.06. There are two major reasons that
cause Text2Onto to have the low recall and precision.
Firstly, Text2Onto simply extracts concepts from textual
sources and does not have any mechanism to filter the
concepts irrelevant to the goal. For most of Websites,
Text2Onto identifies a large number of irrelevant concepts,
such as copyright information and advertisements. Secondly,
Text2Onto splits many phrases into separated words which
make important phrases lose their meaning. For example,
“Used Car Price Quotes” is a useful activity when a user
wants to buy a used car. But Text2Onto may remove the
adjectives and only keep the nouns “car” and “Quotes”.

TABLE 4. RECALL AND PRECISION FOR ONTOLOGIES EXTRACTED FROM
EACH WEBSITE

 Average Recall Average Precision
Text2Onto 0.35 0.06

Our approach 0.80 0.82
We examined the false positives of our approach and

found that one of the major problems is due to the JavaScript
code. Our current approach does not parse and make use of
any information from JavaScript code. It makes our approach
miss some process knowledge in the Web page since
JavaScript can be used to display any text on Web pages. We
believe that if our approach takes JavaScript into
consideration, it would increase the recall and precision.

C. Evaluating the Integrated Process Knowledge
After we extract the process knowledge from 8 websites,

our approach combines the process knowledge from the
websites relevant to the same goal to generate an integrated
ontology. We import the same set of websites to Text2Onto
and run Text2Onto to extract an ontology. To provide the
standard ontologies to evaluate the recall and precision of
our generated ontologies, the subject examined all the
returned websites and manually extracted the process
knowledge from those websites. The manually identified
process knowledge is described as an ontology and treated as
the standard for comparisons. Table 4 shows the results of
our approach and the Text2Onto tool. The results
demonstrate that our approach can achieve a much higher
average recall and precision.

The results of this case study show that our approach can
achieve a higher average recall and precision comparing with
Text2Onto, for the purpose of extracting process knowledge.
The major reason is that Text2Onto is designed as a general
tool to extract ontologies from textual resources instead of
focusing on extracting process knowledge.

TABLE 5. RECALL AND PRECISION FOR INTEGRATED ONTOLOGIES

 Average Recall Average Precision
Text2Onto 0.52 0.05

Our approach 0.87 0.78

D. A Practical Use of Extracted Process Knowledge
 A prototype of the proposed approach was implemented
and integrated into our smart service composition system
[26]. The prototype is developed in Java and uses OWL API
[21] as the ontology parser. Java API for WordNet
Searching [15] is adopted to access the WordNet database.
The detailed information on the smart service composition
system is described in our earlier publications [25][26].
 In the smart service composition system, we use the goal
description provided by users to search for related websites
and extract process knowledge. Then the system uses the
extracted process knowledge to generate a process and
compose services to help users fulfill their goal. A user can
edit the generated process by removing or adding tasks. We
record the modifications as the user’s preferences. When the
user wants to accomplish the same goal, our prototype
provides the previous refined process.

V. RELATED WORK
Our work is related to two research areas: process mining

and recovering, and information extraction.
Process mining and recovering are techniques to extract

business process information from event logs recorded by
information systems or source code. Agrawal et al. [1]
present an approach to constructs process models from the
log of past. Their approach can generate a process model
with the control flow of the business process from the logs of
unstructured executions of a process. Francescomarino et al.
[8] trace the Web system executions and analyze the Graph
User Interface of the application during its execution to infer
business processes. Zou et al. [31] presents an approach to
automatically recover business process definitions from
business applications. However, Zou’s approach needs to
analyze the source code of business applications running on
the server. The source code of business applications is
confidential data and generally not available. Our approach
extracts process knowledge from publicly available Web
pages without requiring the source code of business
applications or event logs.

Information extraction systems transform unstructured
documents or semi-structured documents into structured
data. Cimiano and Völker [5] developed a framework to
learn ontologies from text documents. An ontology learning
tool named Text2Onto is developed by Cimiano and Völker.
Our paper uses Text2Onto as a baseline to evaluate our
approach. Chang et al. [4] summarize and compare the
existing Web information extraction systems which extract

8

information from semi-structured documents (e.g., HTML
documents). However, those systems are designed to extract
information in different aspects instead of focusing on
process knowledge. Therefore, the extracted information has
too many noises to be used for generating processes and
composing services. Similar to our work, Liu and Agah [16]
provide an approach to search for process knowledge from
the Web. Their approach retrieves the processes explicitly
published on the Web, such as www.eHow.com and
www.wikiHow.com. The outcome of Liu and Agah’s work
are semi-structured text descriptions which are difficult to be
processed by machines. In addition, Liu and Agah’s work
does not integrate the process knowledge from different
sources to get more complete process knowledge. Our
approach can extract and integrate the process knowledge
implicitly described by existing online applications. The
extracted data are represented as ontologies which can be
easily processed by machines. Hoxha et al. [14] provide an
approach to recovers the process following the submission
buttons step by step using automatically form filling
techniques. However, automatically form filling is difficult
to achieve nowadays. Our approach analyzes the static Web
pages and does not require automatically form filling.

VI. CONCLUSIONS AND FUTURE WORK
Process knowledge is essential for service composition.

In this paper, we present an approach to extract process
knowledge from the Web. By analyzing the content and
structure of relevant websites, our approach can extract and
merge process knowledge from various websites to generate
an integrated ontology with rich process knowledge. We
show through a case study that our approach effectively
extracts process knowledge from websites.

In future work, we plan to integrate the process
knowledge extracted using our approach with online publicly
available process databases, such as The MIT Process
Handbook Project [19]. We also plan to recruit more subjects
to better improve our evaluations.

ACKNOWLEDGMENTS
This work is financially supported by NSERC and the

IBM Canada CAS Research.

REFERENCES
[1] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process

Models from Workflow Logs”, Proc. of Sixth International
Conference on Extending Database Technology, 1998, pp. 469-483.

[2] D. Beckett, B. McBride, RDF/XML Syntax Specification (Revised),
W3C Recommendation, 2004

[3] Business Process Model and Notation (BPMN), FTF beta for version
2.0, avaialbe at: http://www.omg.org/cgi-bin/doc?dtc/09-08-14, last
accessed on Jan. 25, 2011

[4] C. H. Chang, M. Kayed, M. R. Girgis, K. Shaalan, “A Survey of Web
Information Extraction Systems,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 18(10), Oct.2006, pp. 1411-1428.

[5] DBpedia, http://dbpedia.org/, last accessed on Jan. 11, 2011
[6] P. Cimiano, J. Völker, “Text2Onto - A Framework for Ontology

Learning and Data-driven Change Discovery,” Proc. of the 10th

International Conference on Applications of Natural Language to
Information Systems, Alicante, Spain, Jun. 2005, pp. 227-238.

[7] EHow, http://www.ehow.com/, last accessed on Feb. 13, 2011
[8] C. D. Francescomarino, A. Marchetto and P. Tonella, “Reverse

Engineering Of Business Process Exposed As Web Applications”,
European Conference On Software Maintenance And Reengineering,
Kaiserslautern, Mar. 24-27, 2009, pp. 139-148.

[9] Freebase, http://www.freebase.com/, last accessed on Feb. 1, 2011
[10] Google AJAX Search API: Class Reference, http://code.google.com/

apis/ajaxsearch/documentation/reference.html, last accessed on Feb.
11, 2011

[11] Google, http://www.google.com, last accessed on Feb. 9, 2011
[12] S. Gupta, G. Kaiser, D. Neistadt, P. Grimm, “DOM-based Content

Extraction of HTML Documents,” Proc. of WWW 2003, Budapest,
Hungary, May 20-24, 2003

[13] iGoogle, http://www.google.com/ig, last accessed on Feb 13, 2011
[14] J. Hoxha, and S. Agarwal, “Semi-automatic Acquisition of Semantic

Descriptions of Processes in the Web,” Proc. of 2010 International
Conference on Web Intelligence and Intelligent Agent Technology,
Toronto, Canada, Aug. 31- Sept. 3, 2010

[15] Java API for WordNet Searching (JAWS), http://lyle.smu.edu/~tspell
/jaws/index.html, last accessed on Feb. 9, 2011

[16] Y. Liu, and A. Agah, “Crawling and Extracting Process Data from the
Web,” Proc. of ADMA, 2009, pages: 545-552

[17] IBM Mashup Center, https://greenhouse.lotus.com/wpsgh/wcm/
connect/lotus+greenhouse/lotus+greenhouse+next+site/home/product
s/ibm+mashup+center, last accessed on Feb. 2, 2011.

[18] IBM WebSphere Integration Developer, http://www-01.ibm.com/
software/integration/wid/, last accessed on Feb. 13, 2011

[19] MIT Process Handbook Project, http://ccs.mit.edu/ph/, last accessed
on Jan, 25, 2011.

[20] Oracle BPEL process Manager, http://www.oracle.com/technetwork/
middleware/bpel/overview/index.html, last time accessed on Feb. 13,
2011

[21] OWL API, http://owlapi.sourceforge.net, last accessed on Jan. 7,
2011

[22] Princeton University, “About WordNet,” 2010, Available at:
http://wordnet.princeton.edu, last accessed on Feb. 9, 2011

[23] D. Raggett, A. L. Hors, I. Jacobs (editors), “HTML 4.01
Specification,” W3C Recommendation, Dec. 24, 1999, available at
http://www.w3.org/TR/html4/, last accessed on Feb. 9, 2011

[24] M. K. Smith, C. Welty, D. L McGuinness, “OWL Web Ontology
Language Guide,” W3C Recommendation, 2004

[25] H. Xiao, Y. Zou, R. Tang J. Ng, L. Nigul, “An Automatic Approach
for Ontology-Driven Service Composition,” Proc. IEEE International
Conference on Service-Oriented Computing and Applications 2009,
Taipei, Taiwan, 14-15 Dec. 2009, pp. 1-8.

[26] H. Xiao, Y. Zou, R. Tang, J. Ng, L. Nigul, “A Framework for
Automatically Supporting End-Users in Service Composition,” In
book The Smart Internet, LNCS, Vol. 6400, Springer-Verlag, 2010,
pp. 115-136

[27] Web Services Business Process Execution Language Version 2.0,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, last
accessed on Jan. 18, 2011

[28] WikiHow, http://www.wikihow.com/, last accessed on Feb. 14, 2011
[29] Wikipedia, http://www.wikipedia.org/, last accessed on Feb. 13, 2011
[30] Z. Wu and M. Palmer, “Verb Semantics and Lexical Selection,” In

32nd Annual Meeting of the Association for Computational
Linguistics, 1994, pp. 133-138.

[31] Y. Zou, J. Guo, K. C. Foo, M. Hung, “Recovering Business process
from Business Applications,” Journal of Software Maintenace and
Evolution: Research and Practice, Vol. 21(5), Sept. 2009, pp. 315-348

