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Abstract— Process knowledge, such as tasks involved in a 
process and the control flow and data flow among tasks, is 
critical for designing business processes. Such process 
knowledge enables service composition which integrates 
different services to implement business processes. In the 
current state of practice, business processes are primarily 
designed by experienced business analysts who have extensive 
process knowledge. It is challenging for novice business 
analysts and non-professional end-users to identify a complete 
set of services to orchestrate a well-defined business process 
due to the lack of process knowledge. In this paper, we propose 
an approach to extract process knowledge from existing 
commercial applications on the Web. Our approach uses a 
Web search engine to find websites containing process 
knowledge on the Internet. By analyzing the content and the 
structure of relevant websites, we extract the process 
knowledge from various websites and merge the process 
knowledge to generate an integrated ontology with rich process 
knowledge. We conduct a case study to compare our approach 
with a tool that extracts ontologies from textual sources. The 
result of the case study shows that our approach can extract 
process knowledge from online applications with higher 
precision and recall comparing to the ontology learning tool. 

Keywords-Process knowledge acquisition, ontology, business 
process 

I. INTRODUCTION 
A business process is a set of logically related tasks that 

are linked by control flows and data flows to achieve given 
objectives. For example, “planning a trip for travelers” is a 
typical business process for travel agencies. The process 
contains tasks, such as “booking flight tickets”, “searching 
for a map of the destination”, and “reserving a hotel”. A task 
in a business process is the lowest level of details to describe 
an operation. A sub-process describes a collection of tasks 
that can be reused in different contexts. Process knowledge, 
such as tasks involved in a process and the control flow and 
data flow among tasks, is critical for designing business 
processes. Such process knowledge enables service 
composition which integrates different services to implement 
business processes. Different tools are available for both 
professional and non-professional users to support service 
composition. Professional service composition tools, such as 
IBM WebSphere Integration Developer (WID) [18] and 
Oracle BPEL process Manager [20], provide a platform for 
business analysts and developers to build business processes 
by composing services. Lightweight service composition 
tools, such as IBM Mashup Center [17] and iGoogle [13], 

are provided to users at various skill levels to assemble 
online applications into a new application (e.g., a business 
process).  However, in the current state of practices, business 
processes are primarily designed by experienced business 
analysts who have extensive domain knowledge. It is 
challenging for novice business analysts and non-
professional end-users to identify a complete set of services 
to orchestrate a well-defined business process due to the lack 
of process knowledge.  

Research efforts have been devoted to sharing knowledge 
in public. Several knowledge bases are designed to allow 
machines to retrieve and process the knowledge stored in the 
knowledge bases. Ontologies use a formal way to represent 
knowledge as a set of concepts and relationships among the 
concepts. For example, the ontology of “travel” lists relevant 
concepts, such as “booking flight tickets”, “hotel 
reservation”, and “weather forecast”. Ontologies are widely 
used for knowledge representation and sharing. DBpedia [5] 
and Freebase [9] are examples of knowledge bases that 
extract the knowledge from Wikipedia [29] and store it using 
Ontologies. Information extraction tools, such as Text2Onto 
[6], can extract ontologies from textual resources, such as 
text files or Web pages. However, existing knowledge bases 
and tools focuses on explaining high level concepts into 
more concrete concepts.  Such knowledge description is lack 
of a stepwise description on how to complete a collection of 
tasks to achieve an objective. Moreover, Websites, such as 
on-line stores, and travel agencies provide specialized 
services to users. Such websites capture domain specific 
process knowledge and assist users in completing tasks 
following the embedded business processes. For example, 
expedia.com provides interactive user interfaces to allow 
users to complete various tasks in a trip planning process 
including tasks such as “buying flight tickets”, “booking 
hotels” and “purchasing travel insurance”.  

To leverage the domain knowledge embedded in 
specialized websites, we propose an approach to extract the 
process knowledge from such websites. Our approach 
attempts to make the process knowledge available for non-
expert users to use in service composition. More specifically, 
we analyze the navigation information in a website to 
identify the tasks needed for completing an embedded 
process. To provide comprehensive process knowledge for 
achieving an objective, our approach merges the process 
knowledge extracted from multiple websites that serve for 
the same objective (e.g., travel planning). Generally, the 
extracted process knowledge in our paper is the knowledge 
of business processes instead of executable or abstract 
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business processes. Business process specification 
languages, such as BPEL [27] and BPMN [3], are designed 
to describe executable or abstract business processes and are 
not suitable for representing the extracted process 
knowledge. In our work, we use ontologies to represent the 
extracted process knowledge.  

The remainder of this paper is organized as follows. 
Section 2 presents a meta-model to describe websites and a 
background on ontologies. Section 3 gives an overview of 
our approach that extracts process knowledge from multiple 
websites. Section 4 discusses the case studies. Section 5 
gives an overview of related work. Finally, Section 6 
concludes the paper and presents the future work. 

II. META-MODEL FOR WEBSITES AND STRUCTURE OF 
ONTOLOGIES 

A. A Meta-model for Websites 
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Figure 1. A meta-model for websites 

   Due to the diversity in the design and implementation 
of various websites, the appearance of the same 
information can be presented differently in various 
websites. For example, the navigation information (i.e., 
the menu) of a website can be described as a table, a list, 
or parallel paragraphs with different fonts and sizes. To 
deal with such diversity in the website design and 
implementation, we summarize the common structures 
of websites using the meta-model shown in Figure 1. 
   Generally, a website contains a collection of related 
Web pages.   Each  Web  page  has a  Uniform Resource  
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Figure 2. An example of a Web page  

Locator (URL) to indicate the address of the Web page on 
the Internet. Forms in a Web page are used to collect inputs 
from users. A menu is intended to guide users to navigate 
through different Web pages in the website. More 
specifically, a menu contains a group of menu items that 
link to different Web pages where a user can conduct tasks, 
such as select a product. Each menu item contains a label 
and a URL. The label shows the name of a menu item, and 
the URL is a link to a Web page. Menus can be 
implemented in different ways, such as HTML table [23], 
HTML list [23] or a set of sequential HTML hyperlinks. 
Figure 2  illustrates an example of website with a menu. The 
menu is represented using HTML list tags, i.e., <ul> <li>… 
</li> … <li> … </li> </ul>. Essentially, the menu items 
indicate a set of tasks that a user needs to perform in order 
to complete one or more processes. The process knowledge 
can be captured in the menus. 

B. Structure of Ontologies 
Ontologies can be formally described using ontology 

specification languages, such as Web Ontology Language 
(OWL) [24] and Resource Description Framework (RDF) [2]. 
Regardless of ontology specification languages, ontologies 
contain the following major components.  
• Class: is an abstract description of a group of resources 

with similar characteristics. 
• Individual: is an instance of a class.  
• Property: describes an attribute of a class or an individual 
• Relation: defines ways in which classes and individuals 

can be related to one another. Typical relations include 
subclass, partOf, complement, intersection and equivalent. 
Subclass extends a class to convey more concrete 
knowledge. PartOf relation indicates that a class is a part 
of another class. Class A is a child of class B, if class A is 
a subclass of B or class A is a partOf B. A complement of 
a given class refers to another class which contains all the 
members that do not belong to the given class. 
Intersection contains the members shared among multiple 
classes. Equivalent defines that two classes contain 
exactly the same set of individuals.  

III. AN APPROACH TO EXTRACT PROCESS KNOWLEDGE 
FROM THE WEB 

Figure 3 provides an overview of the steps that extract 
process knowledge from Websites. As shown in Figure 3, 
The objective of a business process is represented as a goal 
that can be described using a phrase or a set of keywords, 
such as “travel” and “apply credit cards”. We submit the 
goal to an existing Web search engine, such as Google, to 
find relevant websites. However, not all  the websites 
returned from a search engine encode rich process 
knowledge. In our approach, we analyze the navigation 
information of websites and then use the navigation 
information to select the websites with desired process 
knowledge. In a selected website, we analyze the identified 
menu  to  recover  sub-processes  from  the  menu.  We  also 
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Figure 3. An overview of our approach  
 

capture the tasks and properties of the sub-processes. Finally, 
we integrate the process knowledge extracted from different 
websites to form a more comprehensive ontology that 
elaborates process knowledge of a given goal. 

A. Identifying a Menu from a Website 

Function: identify_menu
Input: HTML code of a Web page
Output: a list of identified menu
1. Remove advertisements;
2. curr_node = root node of the input HTML;
3. queue = empty;
4. queue.push(curr_node);
5. while(queue is not empty){
6.   curr_node = queue.pop();
7.   if (curr_node has children){   
8.       child_list = children node of curr_node;
9.    }
10.  else { continue;}
11.  if(child_list satisfies the features  of menu items){
12.      add children to the identified menu list;
13.   }   
14.  else {
15.      add the nodes in child_list to queue;
16.   }
17.}//End the while loop
18. Output the identified menu list;  

Figure 4. Algorithm to identify menu items 
 

We propose an algorithm as shown in Figure 4 to 
describe the steps for identifying menus in a website. A Web 
page often contains advertisements irrelevant to the objective 
of the website. To filter out such noises, we apply the 
approach proposed by Gupta et al. [8] by manually 
registering the URLs of the well-known advertisement 
service providers. We parse the HTML document of a Web 
page to analyze the values of “src” and “href” attributes in a 
HTML node. We remove the HTML nodes, if the source or 
hyperlink (i.e., “src” or “href”) attributes of the HTML nodes 
refer to common advertisement servers. From line 4 to line 
16 in Figure 4, our algorithm traverses the tree structure of a 
HTML document from the root node “<HTML>” using 
breadth-first search algorithm. The queue data structure is 
used as an assistant data structure to facilitate the tree 
traversal. Initially, the root of a HTML document (i.e., 
<HTML> tag) is pushed into the queue. When the queue is 
not empty, a node is dequeued for further analysis. When we 
analyze a node, if we find that the node is not a menu, we 
push the children of the node into the queue.  

We identify a menu from a HTML node if the child 
nodes of the HTML node are identified as menu items, i.e., 
the child nodes of the HTML node satisfy the following 
features:   

• Menu items are sibling HTML nodes with identical 
HTML structures. For example as shown in Figure 2, each 
menu item is an element of the HTML list tag, i.e., 
<li>…</li>.  

• A set of menu items are encapsulated by the same parent 
HTML tag.  In the example shown in Figure 2, the menu 
items are encapsulated by the parent HTML tag 
<ul>…</ul>. 

• A menu item contains a URL with a short descriptive text 
(i.e., label) displayed on a Web page. As shown in Figure 
2, the URL of a menu item is represented as a HTML href 
attribute which links to another Web page. The label of 
menu items in the example is surrounded by the HTML 
tag <span>…</span>.  

• Identical menu items appear in the target Web pages 
which are linked by the URLs of menu items. In the 
example shown in Figure 2, the target Web page contains 
the same navigation menu items.  
 

Input HTML document

<html>  
   <body>
       <ul>
           <li><a href=“/flights”>Flights</a></li>
           <li><a href =“/hotels”>Hotels</a></li>
           <li><a href=“/tour”>Tours</a></li>
        </ul>
        <script language="javascript">…</script>
   </body>
</html>

html(1)

Queue

body(2)

ul(3)

Step

Figure 5. An example to identify navigation bars 

Figure 5 is a simplified example which illustrates the 
major steps to identify menus. In step 1, the algorithm pushes 
the root node “<html>” into the queue then pop out the first 
node in the queue to check if it is a menu. Node “<html>” 
cannot be identified as a menu since the child of node 
“<html>” does not satisfy the features of menu items i.e., the 
child node “<body>” does not have sibling nodes. Therefore, 
we push the child nodes of “<html>” into the queue for 
further analysis. In step 2, we pop out the next node, i.e., 
node “<body>”, from the queue to check whether it is a 
menu. Similarly, the node “<body>” is not a menu since its 
child node “<ul>” does not have sibling nodes.  We add the 
child node “<ul>” to the queue.  In step 3, we pop out the 
node “<ul>” from the queue. Assuming that this list node 
“<ul>” appears in all the three linked Web pages, i.e., the 
Web pages with URLs of “/flights”, “/hotels”, “/tour” all 
contain the same node “<ul>”. The children of the list node 
satisfy the features of menu items. Therefore, the algorithm 
identifies these children as menu items and recognizes the 
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node “<ul>” as a menu. At this point, the algorithm is 
terminated since the queue is empty.  

B. Extracting Ontologies with Process Knowledge 
   In this section, we discuss our approach that analyzes the 
semantics between the goal and the menus of a website in 
order to select the websites with the desired process 
knowledge. Then we present our algorithm to extract 
process knowledge from each selected website.   

1) Selecting Websites that capture process knowledge 
Websites usually use a menu to guide a user through each 

step of a process. Quite often, a website without menus 
provides only simple services without detailed process 
knowledge. Such a simple website is filtered out. Moreover, 
a website may contain more than one menu. Some menus are 
used to represent general information instead of the desired 
process knowledge to meet the goal. For example, a menu 
which contains menu items “Home”, “Contact”, “About”, 
and “Login” are used by many websites. This menu does not 
reveal any process knowledge relevant to the goal. In our 
paper, we select the Websites that have at least one menu in 
a website relevant to the goal. To identify the relevance 
between a menu and a goal described by keywords. We 
propose a metric, average Semantic similarity degree, to 
measure the semantic similarity between a goal and a menu. 
We apply the similarity measure proposed by Wu and 
Palmer [30] to calculate the similarity degree of words which 
are the basic elements of a menu and a user’s goal. Average 
semantic similarity degree is the average value of the 
semantic similarity degrees between the label of each menu 
item and the goal, as defined in Eq. (1): 

n

labelgoalsim
SimAverage

n

i
i∑

== 1
),(

_                 (1) 

Where n is the total number of menu items in the menu, and 
labeli represents the label of the i-th menu item. 

 

To ensure that one of the menus in the website is relevant 
to the goal, we sort the identified menus based on the 
average semantic similarity degree from high to low. If the 
highest average semantic similarity degree is greater than a 
threshold, such a website is relevant to the goal. Otherwise, 
the menus identified from this website are not related to the 
goal. Therefore, such a website is filtered out. 

2) Extracting Process Knowledge from a Website 
 We propose an algorithm to extract process knowledge 

from the selected website. As listed in Figure 6, the input of 
the algorithm is a goal description, a website (i.e., a 
collection of Web pages in a website) which contains process 
knowledge, and a set of menus identified from the website. 
The extracted process knowledge is represented as an 
ontology. The goal description is created as a root class for 
the ontology as shown in line 2 in Figure 6. Then the menu 
with the highest average semantic similarity degree is 
converted into classes which are added to the ontology as  
child classes of the root class (as shown in lines 3 and 4). 
The remainder menus with lower average similarity degree 
may describe the details of a class in the ontology. For the 

example of a “travel planning” website, the menu with the 
highest average similarity degree may contain a menu item 
“flight”. Another menu in the website may contain menu 
items such as “business class”, “economy class” and “airport 
lounge”. The latter menu provides the detailed information 
for the menu item “flight” in the former menu. By comparing 
the remainder menu items with the existing classes in the 
ontology, we can find the relations between the remainder 
menu items and the classes in the ontology. In our algorithm, 
if the algorithm identifies a “subclass” or “PartOf” relations 
between a menu item from the remainder menus and a class 
in the ontology, such a menu item is created as a new class 
and added into the ontology.  

 

Function: extract_process_knowledge
Input: G ─ goal description 
       W ─ a website with process knowledge
       menu_list ─ menus identified from website W and 
            sorted based on average semantic similarity 
            degree from high to low 
Output: On ─ an ontology with process knowledge
1.{ On = Create an empty ontology;
2.  root_class = Create a root class in On using G;
3.  curr_menu = the first menu in menu_list; 
4.  Covert curr_menu to subclasses of root_class; 
5. for each menu item in the remainder menu_list {
6.    new_class = convert the menu item into a class;
7.    Identify relations between new_class and the
       existing classes in On;
8.   if(exist a relation between new_class and the 
         classes in On){
9.     add new_class to On based on the relation;
10.    } 
11. }//End for loop
12. Extract properties for classes in On;
13. Output ontology On;
14.}  

Figure 6. Algorithm to extract the ontology from a website 
 

WordNet is a lexical database which groups words into 
sets of synonyms and connects words to each other via 
semantic relations. We use WordNet [22] to identify class 
relations. The following word relations defined in WordNet 
are used to identify class relations.  
• Hypernym represents a “kind of” relation. For example, 

car is a hypernym of vehicle. hypernym relation  is 
converted as a subclass relation in the ontology.   

• Hyponym means that a word is a super name of another. 
For example, vehicle is a hyponym of car. Hyponym is the 
inverse of hypernym. In the ontology, super class 
indicates hyponym relation.  

• Holonym describes whole-part (i.e., partOf) relation. For 
example, building is a holonym of window.  

• Meronym is the inverse of holonym and represents part-
whole relation. For example, window is a meronym of 
building. Meronym relation is converted to PartOf relation 
in the ontology.   

   WordNet can identify highly semantic related relations, 
such as flight is a kind of transportation. However, due to the 
lack of domain knowledge, the relations between two words 
cannot be recognized when they are related in business 
processes without strong semantic relations. For example, in 
the process of “travel”, “hotel” can has a partOf relation with 
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“travel”. However, WordNet cannot recognize such 
relations. In addition, a business process may use phrases 
(i.e., more than one word) to describe tasks or the input and 
output of tasks. For example, “first class”, “business class” 
and “economy class” could be the input parameters of task 
“searching for flight tickets”.  WordNet is designed as a 
general lexical database and does not have the capability of 
recognizing phrases.  

As aforementioned, each label in a menu item is 
associated with a URL which indicates a path for the Web 
page to be retrieved from the server. A path shows the 
hierarchical structure for organizing the linked web pages in 
different menu items. For example, a “flight” menu item is 
linked to www.flightcentre.ca/flights and a “business class” 
menu item is connected to www.flightcentre.ca/flights/ 
business-class. The information related to “business class” is 
stored under the directory of “flights”. The organization of 
directory structure suggests partOf relations between these 
two menus items (i.e., “flight” and “business class”).   We 
can infer that “business class” is a subclass of “flights” since 
the URL of “business class” is in the sub-directory of the 
URL of “Flights”. 

3) Extracting properties and tasks from associated Web 
pages 

In the extracted ontology from a website, a class in the 
ontology is mapped to a menu item in the website, and 
therefore a class is associated to a linked Web page by a 
URL. We further analyze the linked Web pages to recover 
the properties and children for each class.  

TABLE 1 MAP FORM ELEMENTS TO CLASS PROPERTIES 
Form element Class properties and relations Name example 

Label with 
input area  

A property of the class 

Radio 
Buttons 

  
 Class properties with “OR” relation 

Checkboxes  
  

Properties of the class 

Select list 
(drop-down 
list)  

Class properties with “OR” relation 

Title of the 
form 

Search Flight 
Ticket 

If the text on the title or submit button 
is relevant to the class based on 
Semantic similarity degree, we 
convert the text of title or submission 
button as a subclass of the class, and 
put all the extracted properties of the 
form as the properties of the subclass.  

Submission 
Button  

 

HTML forms are often designed to take a user's input in 
order to provide a service to the user. In our approach, we 
extract the HTML forms from the Web page linked to a class 
defined in the extracted ontology, and check if the title and 
content of the HTML form is relevant to the class. More 
specifically, the label of input fields (e.g., text fields, 
password fields and radio buttons) are converted to 
properties of the class. Table 1 lists the mapping between the 
elements of forms and the properties of classes defined in an 
ontology. 

C. Integrating Process Knowledge Extracted from Different 
Websites  

Function: integrate_process_knowledge
Input: G  goal description
       onto_list   Ontologies extracted from different 
                    related websites
Output: int_onto  an integrated ontology
1.{  Create an empty ontology int_onto;
2.   create the root class for int_onto using G;
3.   queue = empty;
4.   queue.push(root class);
5.   while(queue is not empty){
6.     curr_class = queue.pop();
7.     match_cls_list = find classes that match with
       curr_class from the input ontologies;
8.     for each cls in match_cls_list {
9.  Integrate properties from cls to curr_class;
10.       Add children of cls to curr_class;
11.       Push children into the queue;
12.     }
13.   } //End the while loop
14.   output int_onto;
15.   }    

Figure 7. Algorithm to integrate process knowledge 
 

Each relevant website contains partial information of the 
process knowledge. To obtain more complete process 
knowledge, we integrate the process knowledge (i.e., 
ontologies) extracted from multiple websites. Figure 7 
presents our algorithm that integrates process knowledge. As 
a starting point, we use the goal description to create the root 
class of the integrated ontology. We gradually add the 
knowledge (i.e., classes, properties and relations) from an 
extracted ontology into the integrated ontology.  We use the 
variable curr_class to store the current class that we are 
analyzing in the algorithm. As shown from lines 7 to 9 in 
Figure 7, starting from the root of the new ontology, we use 
the current analyzing class (i.e., represented by curr_class) 
to search for the matching classes defined in the input 
ontologies. Two classes are matching if the names of these 
two classes are the same or synonyms according to 
WordNet. The properties of the matching classes may vary 
in different ontologies.  We merge the properties of the 
matching classes to the integrated ontology; so that the 
curr_class in the integrated ontology can include all the 
properties. As shown in line 10 of Figure 7, we add the child 
classes of the matching classes from different input 
ontologies to the integrated ontology. We recursively merge 
the child classes of the matching class into the integrated 
ontology following the conditions listed in Table 2. If a child 
class of the matching class does not exist in the integrated 
ontology, we insert the child class into the integrated 
ontology as a child class of curr_class as shown in the 
second row in Table 2. If another class in the integrated 
ontology has a subclass or partOf relation with the child class 
of the matching class, we insert the child class into the 
integrated ontology by adjusting the relations among these 
three classes (i.e., curr_class, a_class and child class as 
shown in Table 2). More specifically, as shown in the third 
row in Table 2, if there exists a class that is the child of 
curr_class and is the parent of the child class, then we add 
this class as the child of curr_class and the parent of the 
child class.  The fourth row in Table 2 shows that, if there 
exists a class which is the child of both curr_class and the 
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child class, then we add this class as a child of the child 
class.   

TABLE 2. OPERATIONS TO ADD A CHILD CLASS 
Condition Operation 

The child class* does not exist in the 
integrated ontology 

 

 curr_class

child class  
Exist a_class**: 

 

 curr_class

a_class  

 a_class

child class
 

 

 curr_class

a class

 child class  
Exist a_class**: 

 

 curr_class

a_class  

 

a_class

child class

 

 

 curr_class

a class 

child class

 
* child class represents the child class of the curr_class; 
** a_class is in the integrated ontology 

 

Figure 8 uses an example to illustrate the main idea of the 
algorithm that merges two ontologies in a stepwise fashion. 
In step 1, we create a root class A using the goal description. 
Then we find matching classes from the input ontologies (1) 
and (2) where we identify two matching classes for A. 
Consequently, we add the properties from the matching 
classes to A in the integrated ontology. In steps 2 to 3, we 
find the children (i.e., B and C) of A from ontology 1 and 
add them into the integrated ontology. In step 4, class C is a 
child class of A in ontology 2. However, class C exists in the 
integrated ontology. Therefore, instead of adding another 
class C to the integrated ontology, we merge the properties 
of C from ontology 2 with the properties of C in the 
integrated ontology. In step 5, H is a child of A. Assuming 
that WordNet database indicates that H is the parent of B, we 
add H as a child of A and move B to be the child of H 
instead of the child of A.  

A

C

A

CB H

Input Ontologies
(1) (2)

A

Step 1

A

Step 2

BC

A

Step 3

B  C

A

Step 4

B  C

A

From WordNetB  C

H

BE

A
H

From Ontology (2)

A

H  C

B

Step 5

+

Class from ontology (1) Class from ontology (2) Class from both 
ontology (1) and (2)

Figure 8. An example of integrating ontologies 

IV. CASE STUDY 
The objectives of our case study are to: (1) Evaluate the 

quality of the process knowledge extracted from each 
website; (2) Evaluate the quality of the integrated process 
knowledge.  

A. Setup 
We gather 10 goals (e.g., plan a trip, buy a car, and find a 

job) from two websites: eHow [7] and WikiHow [28] which 

use articles and videos to provide online how-to instructions 
for fulfilling various goals. The collected goals are from 
different domains. To form a business process, each of the 
gathered goals needs more than one online service to 
achieve. Table 3 lists the goals used in our case study. The 
goals are distributed across 10 domains. For each goal, we 
use Google [11] as the Web search engine to collect the 
websites related to goals by submitting the goal description 
(i.e., keywords) to Google.  For each query used to search for 
relevant websites, we collect the first 8 results and apply our 
approach to each result. 8 results are the maximum number 
of results that we can get using Google AJAX Search API 
[10]. In total, we analyze 80 related websites for 10 goals 
and generate 80 ontologies. For each goal, we produce an 
integrated ontology to combine the process knowledge 
extracted from the 8 websites returned by Google.  

TABLE 3. LIST  OF GOALS  
No. Goal Description domain 
1 Apply university Education 
2 travel Travel 
3 choose a gift Shopping 
4 Buy a cell phone Shopping and Electronics 
5 Buy a car Shopping and Automobile 
6 Buy a house Real estate 
7 Find a job Career 
8 Tax report Tax 
9 Canada health insurance Insurance 
10 Apply credit card Finance 

B. Evaluating  the Quality of Process Knowledge Extracted 
from a Single Website 
To evaluate the quality of ontologies (i.e., process 

knowledge) extracted from each website, it would be ideal if 
we could compare our approach with other tools which are 
specially designed for extracting process knowledge from 
commercial websites. According to the best of our 
knowledge, there are no public available tools similar to ours 
which can extract process knowledge from public Web pages 
without the prior knowledge of the server side source code. 
In this case study, we compare the ontologies extracted using 
our approach with the ontologies extracted using Text2Onto 
[5]. Text2Onto can extract ontologies from unstructured or 
semi-structured textual resources. However, the extracted 
ontologies from Text2Onto represent all the information 
conveyed in the textual resources instead of process 
knowledge. Text2Onto is the available tool that is the most 
similar to ours.  

We apply our approach and Text2Onto tool to extract an 
ontology from the same website. We evaluate the 
effectiveness of both approaches by measuring the precision 
and recall. As shown in Eq (2), the precision is the ratio of 
the total number of items correctly extracted by an approach 
to the total number of items extracted by the approach. 
Recall is the ratio of the total number of items correctly 
extracted by an approach to the total number of items existed 
in websites.    

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
|{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖} ∩ {𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}|

|{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}|   (2)   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
|{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖} ∩ {𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}|

|{𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}|            (3) 
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To assess the process knowledge extracted from each 
website, a subject, who is one of the authors, spent 3 days 
manually examining the 80 websites to extract process 
knowledge. The subject is a graduate student with 5 years 
experience working on business process related projects. His 
knowledge and experience on business processes ensure that 
he can properly identify the process knowledge from these 
websites. To avoid any interference, the results from 
text2Onto and our prototype were not disclosed to the 
subject before he finished the analysis. We calculate the 
precision and recall by comparing the result from text2Onto 
and our approach with the result from the subject.  

Table 4 lists the recall and precision of our approach and 
the Text2Onto tool. The results show that our approach can 
effectively extract most of the processes information from 
each website. It can achieve a recall of 0.80 and a precision 
of 0.82 comparing with Text2Onto which has a recall of 0.35 
and a precision of 0.06. There are two major reasons that 
cause Text2Onto to have the low recall and precision. 
Firstly, Text2Onto simply extracts concepts from textual 
sources and does not have any mechanism to filter the 
concepts irrelevant to the goal. For most of Websites, 
Text2Onto identifies a large number of irrelevant concepts, 
such as copyright information and advertisements. Secondly, 
Text2Onto splits many phrases into separated words which 
make important phrases lose their meaning. For example, 
“Used Car Price Quotes” is a useful activity when a user 
wants to buy a used car. But Text2Onto may remove the 
adjectives and only keep the nouns “car” and “Quotes”.   

TABLE 4.  RECALL AND PRECISION FOR ONTOLOGIES EXTRACTED FROM 
EACH WEBSITE 

 Average Recall Average Precision 
Text2Onto 0.35 0.06 

Our approach 0.80 0.82 
We examined the false positives of our approach and 

found that one of the major problems is due to the JavaScript 
code. Our current approach does not parse and make use of 
any information from JavaScript code. It makes our approach 
miss some process knowledge in the Web page since 
JavaScript can be used to display any text on Web pages. We 
believe that if our approach takes JavaScript into 
consideration, it would increase the recall and precision.  

C. Evaluating the Integrated Process Knowledge 
After we extract the process knowledge from 8 websites, 

our approach combines the process knowledge from the 
websites relevant to the same goal to generate an integrated 
ontology. We import the same set of websites to Text2Onto 
and run Text2Onto to extract an ontology. To provide the 
standard ontologies to evaluate the recall and precision of 
our generated ontologies, the subject examined all the 
returned websites and manually extracted the process 
knowledge from those websites. The manually identified 
process knowledge is described as an ontology and treated as 
the standard for comparisons. Table 4 shows the results of 
our approach and the Text2Onto tool. The results 
demonstrate that our approach can achieve a much higher 
average recall and precision.  

The results of this case study show that our approach can 
achieve a higher average recall and precision comparing with 
Text2Onto, for the purpose of extracting process knowledge. 
The major reason is that Text2Onto is designed as a general 
tool to extract ontologies from textual resources instead of 
focusing on extracting process knowledge.  

TABLE 5.  RECALL AND PRECISION FOR INTEGRATED ONTOLOGIES 

 Average Recall Average Precision 
Text2Onto 0.52 0.05 

Our approach 0.87 0.78 

D. A Practical Use of Extracted Process Knowledge 
   A prototype of the proposed approach was implemented 
and integrated into our smart service composition system 
[26]. The prototype is developed in Java and uses OWL API 
[21] as the ontology parser. Java API for WordNet 
Searching [15] is adopted to access the WordNet database. 
The detailed information on the smart service composition 
system is described in our earlier publications [25][26]. 
   In the smart service composition system, we use the goal 
description provided by users to search for related websites 
and extract process knowledge. Then the system uses the 
extracted process knowledge to generate a process and 
compose services to help users fulfill their goal. A user can 
edit the generated process by removing or adding tasks. We 
record the modifications as the user’s preferences. When the 
user wants to accomplish the same goal, our prototype 
provides the previous refined process.  

V. RELATED WORK 
Our work is related to two research areas: process mining 

and recovering, and information extraction.  
Process mining and recovering are techniques to extract 

business process information from event logs recorded by 
information systems or source code. Agrawal et al. [1] 
present an approach to constructs process models from the 
log of past. Their approach can generate a process model 
with the control flow of the business process from the logs of 
unstructured executions of a process.  Francescomarino et al. 
[8] trace the Web system executions and analyze the Graph 
User Interface of the application during its execution to infer 
business processes. Zou et al. [31] presents an approach to 
automatically recover business process definitions from 
business applications. However, Zou’s approach needs to 
analyze the source code of business applications running on 
the server. The source code of business applications is 
confidential data and generally not available. Our approach 
extracts process knowledge from publicly available Web 
pages without requiring the source code of business 
applications or event logs.   

Information extraction systems transform unstructured 
documents or semi-structured documents into structured 
data. Cimiano and Völker [5] developed a framework to 
learn ontologies from text documents. An ontology learning 
tool named Text2Onto is developed by Cimiano and Völker. 
Our paper uses Text2Onto as a baseline to evaluate our 
approach. Chang et al. [4] summarize and compare the 
existing Web information extraction systems which extract 
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information from semi-structured documents (e.g., HTML 
documents). However, those systems are designed to extract 
information in different aspects instead of focusing on 
process knowledge. Therefore, the extracted information has 
too many noises to be used for generating processes and 
composing services. Similar to our work, Liu and Agah [16] 
provide an approach to search for process knowledge from 
the Web. Their approach retrieves the processes explicitly 
published on the Web, such as www.eHow.com and 
www.wikiHow.com. The outcome of Liu and Agah’s work 
are semi-structured text descriptions which are difficult to be 
processed by machines. In addition, Liu and Agah’s work 
does not integrate the process knowledge from different 
sources to get more complete process knowledge. Our 
approach can extract and integrate the process knowledge 
implicitly described by existing online applications. The 
extracted data are represented as ontologies which can be 
easily processed by machines. Hoxha et al. [14] provide an 
approach to recovers the process following the submission 
buttons step by step using automatically form filling 
techniques. However, automatically form filling is difficult 
to achieve nowadays. Our approach analyzes the static Web 
pages and does not require automatically form filling.  

VI. CONCLUSIONS AND FUTURE WORK 
Process knowledge is essential for service composition. 

In this paper, we present an approach to extract process 
knowledge from the Web. By analyzing the content and 
structure of relevant websites, our approach can extract and 
merge process knowledge from various websites to generate 
an integrated ontology with rich process knowledge. We 
show through a case study that our approach effectively 
extracts process knowledge from websites.  

In future work, we plan to integrate the process 
knowledge extracted using our approach with online publicly 
available process databases, such as The MIT Process 
Handbook Project [19]. We also plan to recruit more subjects 
to better improve our evaluations.  
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