
An Exploratory Study on the Usage of Common
Interface Elements in Android Applications

Seyyed Ehsan Salamati Taba1, Iman Keivanloo2, Ying Zou2, and Shaohua
Wang1

1 School of Computing, Queen’s University, Canada
2 Department of Electrical and Computer Engineering, Queen’s University,

Canada
1{taba, shaohua}@cs.queensu.ca, 2{iman.keivanloo, ying.zou}@queensu.ca

Abstract. The number of mobile applications has increased drastically
in the past few years. A recent study has shown that reusing source code is
a common practice for Android application development. However, reuse
in mobile applications is not necessarily limited to the source code (i.e.,
program logic). User interface (UI) design plays a vital role in constructing
the user-perceived quality of a mobile application. The user-perceived
quality reflects the users’ opinions of a product. For mobile applications,
it can be quantified by the number of downloads and raters. In this study,
we extract commonly used UI elements, denoted as Common Element
Sets (CESs), from user interfaces of applications. Moreover, we highlight
the characteristics of CESs that can result in a high user-perceived quality
by proposing various metrics. Through an empirical study on 1,292 mobile
applications, we observe that (i) CESs of mobile applications widely occur
among and across different categories; (ii) certain characteristics of CESs
can provide a high user-perceived quality; and (iii) through a manual
analysis, we recommend UI templates that are extracted and summarized
from CESs for developers. Developers and quality assurance personnel
can use our guidelines to improve the quality of mobile applications.

Keywords: mobile applications, common UI elements, user-perceived quality.

1 Introduction

Recently, mobile applications have become increasingly popular. The number
of downloads of mobile applications on various platforms by the end of 2016 is
predicted to be 211 billions [1], increased from 7 billion in 2009 [2]. This large
number of downloads implies that a new software industry is emerging. There
are various potential reasons for the rapid growth in the number of downloads
of available mobile applications. One of them could be the ease of building new
applications for mobile platforms [3]. A more fundamental reason that can explain
this rapid growth might be the use of proven software engineering practices, such
as code reuse [4]. To develop a simple mobile application, there are two things
that should be developed: i) User Interface (UI), and ii) business logic (i.e.,

2

source code) of the application. Israel et al. [5] have shown that Java classes
in mobile applications on the Android Market are reused significantly, which
implies that many applications in the Android Market use very similar logic. As
aforementioned, another important aspect of a mobile application is the user
interface (UI).

Due to the limitations of mobile applications (e.g., small screen size, network
problems, and computational power [6]), developers should be more careful
in designing their applications on mobile platforms than PCs [7]. Developers’
negligence in the importance of UI designs is one of the major reasons for users
to abandon a task on mobile applications and switch to PCs [7]. To design a UI
for a mobile application, developers can adopt commonly used practices (i.e.,
commonly used sets of UI elements) or standard templates that are used by other
developers. However, this question still remains whether the use of commonly
used practices (or standard templates) can impact the user-perceived quality of
a mobile application. A user-perceived quality can be defined as a user’s opinion
of a mobile application. The perceived quality can be quantified by the number
of downloads and raters in mobile stores [8]. According to the statistics, the
user-perceived quality can be influenced by UI designs, stability and performance
of applications [9].

In this paper, we are interested to know to what extent the use of commonly
used practices (or standard templates) occurs in UI designs of mobile applications.
To quantify the extent, we define a Common Element Set (CES), as a set of
commonly used UI elements that appear in at least one other UI page. Moreover,
we investigate whether there is a relation between using CESs and user-perceived
quality of mobile applications. More specifically, we investigate whether using
CESs within a category or across categories of the Android applications can
impact the user-perceived quality. Furthermore, we go into more details, and
investigate the characteristics of CESs related to the high user-perceived quality
of the Android applications in each category. Through a manual analysis, we
extract templates from the CESs, with the high user-perceived quality, extracted
from the Shopping category for a number of functionalities. The UI templates
are recurring solutions that solve common design problems. Recommending UI
templates associated with the high user-perceive quality helps developers boost
UI development for mobile applications. To the best of our knowledge, no one
has focused on studying the usage of CESs and extracting UI templates with
high user-perceived quality in mobile applications.

Using the user-perceived quality calculated from the statistics in the Android
Market and the extracted CESs from 1,292 free Android applications in 8 different
categories of Google Play Android Market (i.e., Shopping, Health, Transportation,
Travel, News, Weather, Finance, and Social), we address the following research
questions:

RQ1) To what extent commonly used UI element sets occur?

We show that CESs widely occur within each category (i.e., 60% of a UI
XML file can be constructed by similar CESs that are repeated in other UI XML

3

files). Moreover, on average, the CESs occur in 23% of mobile applications across
different categories.

RQ2) Do the usage of commonly used UI element sets impact the
user-perceived quality within and across categories?

We observe that CESs in UI designs of mobile applications can make a sig-
nificant difference in the user-perceived quality of mobile applications. More
specifically, we observe that in specific application categories (e.g., Health), the
perceived quality of mobile applications with CESs in their UI designs is signif-
icantly higher than the ones without CESs. Therefore, developers should take
into consideration the application domain during the process of a UI design.

RQ3) Do the usage of commonly UI element sets have an impact on
the user-perceived quality of functionalities in mobile applications?

We observe that the usage of CESs has an impact on the user-perceived
quality of functionalities in mobile applications. In almost every functionality, to
achieve the high user-perceived quality, it is better to use the CESs that are used
in a few number of applications, or used in more UI XML files. Additionally, for
certain functionalities, it is desirable to use CES having developer-customized UI
elements to achieve the high user-perceived quality.

RQ4) Can we extract UI templates from commonly used UI element
sets with a high user-perceived quality?

Through a manual analysis, we extracted a set of UI templates associated
with the high user-perceived quality (according to the findings in our empiri-
cal study in RQ1 to RQ3). Our extracted UI templates are meaningful and helpful.

The remainder of this paper is organized as follows. First, we explain the
architecture of Android applications in Section 2. We describe the experimental
setup of our study in Section 3, and report our findings in Section 4. In Section 5,
we discuss threats to the validity. We summarize the related literature in Section 6.
Section 7 concludes our work and outlines avenues for future works.

2 Background

In this section, we briefly talk about the architecture of Android applications.
Typically, Android applications are written in Java programming language using
Android Software Development Kit (SDK). The Android SDK compiles the
code into an Android PaKage (APK) file which is an archive file with a “.apk”
extension. One APK file contains all the content of an Android application, and
is the file that Android devices use to install the Android application.

There are four types of application components, including activities, ser-
vices, content providers and broadcast receivers, that are the essential building
blocks of an Android application. Activities are used to implement user inter-
face screens. Services implement background processes. Content providers and

4

broadcast receivers handle shared data and messages. Among the four listed
Android application components, users only interact with activities. An Android
application can consist of several activities. The guidelines [10] for Android
developers recommend that an activity is a single, focused task that a user can
do. Each activity represents a single-screen user interface (UI). As a result, only
one activity can be in the foreground for users to interact with.

There are two ways to declare a UI layout for an activity: 1) Declaring UI
layout elements in an XML file (aka., UI XML layout), or 2) Instantiating UI
layout elements programmatically. Our premise in this work is towards the former
approach since it is the recommended way by the Android design guidelines [10].
An XML layout defines a human-readable visual structure for a user interface.
Applications using the latter way are excluded from our study, as our analysis
and data gathering approach cannot handle them.

Every Android application has an AndroidManifest.xml (manifest) file in its
root directory. The AndroidManifest.xml contains the meta-data information of
an application(e.g., the path to the source code of activities and permissions). In
addition to the activities and compiled code, the manifest file plays an important
role as a source of information.

3 Case Study Design

In this study, we investigate to what extent common element sets (CESs) occur in
user interface designs of the Android applications. We examine the characteristics
of CESs that may lead to the high user-perceived quality.

3.1 Data Collection

The Android Market (Google Play) started with 2,300 applications in March
2009. Currently there are more than 1 million applications in the market [11].
The Android operating system has the highest market share among other com-
petitors [12]. As a result, we decided to analyze Android applications from the
Android market. Moreover, we only study the free applications due to cost issues.

In the Android Market, there are 34 different kinds of categories from which we
analyze 8 different categories: Shopping, Health, Transportation, News, Weather,
Travel, Finance and Social. The intuition behind choosing these categories is
that they encompass different functionalities of daily use of mobile applications.
Table 1 shows the descriptive statistics of our study. In total, we study 1,292 free
android applications crawled in the first quarter of 2013.

The Android Market allows users rate applications with stars from 1 to 5 (i.e.,
Low to High), and write reviews for applications. The ratings of an application
can show the user-perceived quality of applications, and inform potential users
about the experience of the earlier users. However, the rating of an application is
not solely a reliable quality measurement, as 86% of the five-star applications
throughout the Android Market in 2011 are applications with very few raters
(less than 10 raters) [8]. Moreover, Harman et al. [13] show that the raters have

5

Table 1: Summary of the statistics of applications from different categories. Avg:Average,
CES:Common Element Set.

Category # Applications # Pages # CESs Avg Size of
CESs

Size of the largest
CES

Shopping 193 2,822 6,622 7.85 14

Health 286 4,129 5,571 8.61 15

Transportation 128 1,078 2,341 7.90 13

News 114 1,302 2,212 7.57 13

Weather 244 1,608 1,968 4.56 9

Travel 106 1,711 2,843 16.93 32

Finance 103 1,167 2,792 9.38 17

Social 118 1,107 3,404 7.72 15

a high correlation with the number of downloads which can be deemed as a key
measurement of a success for a mobile application. To overcome these challenges,
we measure the user-perceived quality by considering both raters and popularity
factors (i.e., the number of downloads) using Equation (1) proposed in our prior
study [14]. In this paper, we consider two types of quality attributes: the number
of downloads and the number of raters.

UPQ(A) = (
1

n
∗

n∑
j=1

log(Qj)) ∗Rating(A), (1)

Where UPQ(A) is the measured user-perceived quality for an application; A refers
to an application; n is the total number of downloads and ratings extracted from
the Android Market for A. Qj shows a quality attribute (i.e., the number of
downloads or the number of raters). To normalize the value of quality attributes,
we used log transform. Rating(A) is the rating score extracted for A from the
Android Market.

For instance, the rating scores reported by the Android Market for eBay
and Amazon Android applications are 4.4 and 4.5, respectively. Relying on
these ratings, we can conclude that the Amazon application has the better user-
perceived quality than the one of the eBay application. However, if we delve
into more details and investigate the number of downloads and the number
of raters for these applications, we can see that the number of downloads for
the eBay application and the Amazon application are 1e + 08 and 5e + 07,
respectively. The number of raters are 563,494 and 112,984, respectively. The
eBay application has around 2 and 5 times more downloads and raters than the
ones of the Amazon application, respectively. The value of UPQ(A) for the eBay
application and the Amazon application are 30.25 and 29.36. As a result, in total,
the eBay application has the better user-perceived quality than the Amazon
application. Although we use the number of downloads and raters in this paper
for measuring the user-perceived quality, more factors (e.g., qualitative analysis
of user comments) could be added to our formula to measure the user-perceived
quality more accurately.

6

Android

Market

Extracting Reused

Elements Set

Calculating

Metrics

Extracting APK

Files

RQ2

RQ3

RQ1

Analyzing

Identifying

Functionalities

RQ4

Fig. 1: Overview of our data collection process.

<Scrollview>

<LinearLayout>

<AutoCompleteTextView>

<EditText>

<Button>

<CheckBox>

</LinearLayout>

</Scrollview>

UI Elements in XML Layout File

Fig. 2: A UI XML layout file with its corresponding UI elements.

3.2 Data Processing

Figure 1 shows the steps of our data processing. There are three major processing
steps in our case study that are responsible for extracting raw data from compiled
Android applications, discovering the Common Element Sets in UI designs, and
finally quantifying the occurrences of CESs using a set of software metrics.

Extracting the Structure To analyze Android applications, we need to extract
the contents and the needed information from APK files. To decode an APK
file, we use apktool [15], a tool for reverse engineering closed, binary Android
applications. The apktool decodes an APK file almost to the original form and
structure. It provides the source code of the application in an intermediate “Smali”
format [16] which is an assembler for the dex format used in the Android Java
virtual machine implementation. The files resulted from the reverse engineering
on an APK file are used for our analysis to obtain insights about different aspects
of UI designs, namely UI complexity and occurrences of commonly used sets of
UI elements, and their effect on the user-perceived quality of mobile applications.

Extracting Common Element Sets We define a Common Elements Set
(CES) as a set of commonly used UI elements that occur, at least, more than

7

once in UI XML files. A Common Element Set (CES) specifies how certain UI
elements should be used together. As mentioned in Section 2, for a standard
activity (i.e., a page that a user can see), there should exist two files: i) the
source code of the activity (i.e., the path of the source code is indicated in the
AndroidManifest.xml (manifest) file), and ii) the corresponding UI XML file (i.e.,
the UI of a page). This XML file contains the UI elements of the activity. In other
words, each application consists of several activities, and each of them is linked
to a UI XML file which contains UI elements for the corresponding activity.

In this paper, CESs are recommended as meaningful and reusable solutions
for building mobile applications. As a result, the minimum number of UI elements
in a CES should be at least three to be meaningful and reusable for developers.
As shown in Figure 2, for the UI XML file, UI elements highlighted with bold
style (i.e., LinearLayout, AutoCompleteTextView, EditText, and Button) can
be considered as a CES since this pattern appeared in other UI screens more
than 3 times. For each category of mobile applications, we extract CESs using
the Frequent Item-set Mining (FIM) algorithm proposed by Agrawal et al. [17].
Given a UI XML file (as shown in Figure 2), the FIM algorithm extracts all CESs
whose frequencies are more than a predefined threshold (i.e., named support).

However, FIM techniques unavoidably generate an exponential number of sub-
patterns. To solve the shortcoming, Pasquier et al. [18] conduct the association
mining to find frequent closed itemsets and their corresponding rules, instead
of mining the complete set of frequent itemsets and their associations. In this
context, an itemset (i.e., a CES) is closed if none of its immediate supersets has
the same support (i.e., the number of UI elements in the CES) as the itemset.
In this study, we consider the frequent closed itemsets, instead of mining the
complete set extracted by FIM techniques. An important implication is that
mining frequent closed itemsets has the same power as mining the complete set
of frequent itemsets, but it reduces the redundant itemsets to be generated and
it increases both efficiency and effectiveness of mining [19]. Table 1 shows the
common element sets (CESs) extracted from different categories in this study.

Calculating Metrics We extract CESs from each UI XML file of an application
using the approach mentioned in section 3.2. To study the different characteristics
of CESs, and how they are distributed among different UI XML files, we compute
a set of UI metrics. Using the metrics, we can investigate whether there exists a
significant difference in the characteristics of CESs that are related to UI XML
files with high or low user-perceived quality.

[Metric 1 - CDM] Common element set Distribution Metric

Let Ai, i ∈ {1, 2, ..., n} be the applications in a category (e.g., Shopping) of
the Android Market, and let Ci, i ∈ {1, 2, ..., n} be a list of CESs (i.e., Common
Element Sets) extracted among UI XML files for the applications in a category,
i.e., C1 being the first extracted CES and Cn being the last one.

We define the Common element set Distribution Metric (CDM) to capture
the distribution of a set of commonly used UI elements (i.e., Common Element

8

Sets (CESs)) among different applications within the same category. To this end,
we use Equation (2).

CDM(Ci) =
NA(Ci)

NX(Ci)
, (2)

Where Ci is the ith CES among all the CESs found from UI XML files of the
applications in a category. NX(Ci) denotes the number of UI XML files that use
a CES (e.g., Ci). NA(Ci) is the total number of applications that use Ci.

Given a common element set, CDM measures two things: (i) How many
applications use the common element set; and (ii) How many UI XML files use
the common element set in their structure. To illustrate CDM, we consider a
common element set (e.g., Ci), where i is the ith CES among the CES found
among the applications in a category. Let us assume that the number of times
that Ci has occurred in different UI XML files of all applications in a category
(i.e., NX(Ci)) is 100. Moreover, we assume that Ci has been distributed among
5 different applications. The value of CDM(Ci) is 0.05. That is to say, the more
a common element set is distributed among different applications, the higher
CDM is. The more a common element set is distributed among different UI XML
files, the less CDM is.

There are two types of UI elements in an Android application. The Android
standard UI elements are part of the core Android development kit providing
the basic UI features such as a button and a text area. Additionally, the android
platform allow developers to create customized UI components and define their
own UI elements [10] by extending the stardard UI elements. To detect developer-
customized UI elements, we manually build a dataset consisting of all Android
standard UI elements. During the data processing phase, if we encounter a
new UI element that does not exist in our dataset, it would be recognized
as a developer-customized UI element. For example, “com.ebay.android.widget
.ExpandingImageView” is a developer-customized UI element that is implemented
in eBay app.
[Metric 2 - DCM] Developer-customized common element set Metric

To capture the number of customized UI elements by developers in a CES
(e.g., Ci), we define Developer-customized common element set Metric (DCM)
for Ci following Equation (3).

DCM(Ci) = DUE(Ci), (3)

Where Ci is the ith CES among all the CESs found from UI XML files of
the applications in a category. DUE(Ci) is the number of Developer-customized
UI elements in Ci.
[Metric 3 - CSM] Common element set Size Metric

Our last metric is the Common element set Size Metric (CSM), which captures
the number of UI elements that are used in a common element set. CSM is
computed following Equation (4).

CSM(Ci) = SL(Ci), (4)

9

Where SL(Ci) is the number of UI elements in Ci.

Using these three metrics (i.e., CDM, DCM, and CSM), we investigate
whether there exists a significant difference in the characteristics of CESs that are
related to UI XML files with high or low user-perceived quality. Table 2 shows
the summary of our three metrics for a CES: CDM, DCM, and CSM.

Table 2: Summary of our proposed metrics: CDM, DCM, and CSM.

Metric Explanations

Metric 1. CDM: Common ele-
ment set Distribution Metric

It captures the distribution of a CES among dif-
ferent applications within a category.

Metric 2. DCM: Developer-
customized Common element set
Metric

It captures the number of customized UI elements
by developers in a CES.

Metric 3. CSM: Common element
set Size Metric

It captures the number of UI elements in a CES.

Identifying Functionalities We extract the functionalities of each mobile
application using text mining techniques. We are interested in the available
keywords in the source code or UI elements. For each activity, we extract textual
information, such as contents, strings, labels and filenames associated with the
source code of activities and their corresponding UI XML layout files. We use
two different heuristics to extract the textual description shown to a user from
an activity: i) labels assigned to each element in the UI XML layout file, and ii)
strings assigned from the source code. For the former, each element in a UI XML
layout file may contain an android:text label in which the value is a string shown
to a user (see Figure 3). For the latter, in the source code of an activity, we search
for setText() method call statements. This method specifies the human readable
label of a UI element. We extract the human-readable label by analyzing the
parameter values.

<TextView android:text=”@string/reminders”, ...

Fig. 3: Part of a Sample XML File

Analysis Methods We use Wilcoxon rank sum test [20] to compare the distri-
bution of different characteristics of CESs between applications with low and
high user-perceived quality. The Wilcoxon rank sum test is a non-parametric
statistical test to assess whether two independent distributions have equally large
values. In general, non-parametric statistical methods do not make assumptions
about the distributions of assessed variables.

To extract the high level functionalities of mobile applications in a category,
we use a topic modeling technique, namely Latent Dirichlet Allocation (LDA) [21],

10

to label a set of activities with fine-grained functionality. The LDA generates a
topic distribution probability for each document analyzed. A topic is a collection
of frequently co-occurring words in the corpus. A topic modeling technique
can provide the following information given a set of documents: (i) the topics
contained in the documents; and (ii) for each document, the probability that a
document belongs to a particular topic. Then, we use Wilcoxon rank sum test [20]
to investigate whether the distribution of certain characteristics of CESs vary
between activities with low and high user-perceived quality for each functionality.

4 Case Study Results

This section presents and discusses the results of our four research questions.
We investigate the extent of usage of CESs and the characteristics of CESs that
can result in the high user-perceived quality. Finally, through a manual analysis,
we recommend UI design patterns from extracted CESs that can be reused as
standard templates for UI designs by developers.

RQ1: To what extent commonly used UI element sets occur?

Motivation. According to the Android guidelines [10], in order to develop a
standard android application, developers should separate the UI design of the
corresponding application from its business logic. Prior research has shown that
mobile applications reuse the classes in source code to a great extent which implies
that the business logic of mobile applications is widely reused [5]. However, no
one has studied the commonly used UI elements of mobile applications. Studying
common UI element sets (CESs) has a great value in mobile applications since
they may convey good practices that are used frequently.

Approach. In this research question, we analyze the extent of occurrences of
CESs within each category. We highlight whether CESs occur across categories.
In this research question we want to determine:

RQ1.a) What is the percentage of usage of CESs in Android applications
within each category?

RQ1.b) Do CESs occur across different categories?

To answer RQ1.a, we use the following two metrics, adapted from earlier
empirical studies in software systems [22][23], to measure the usage of CESs in
android applications for each category.

Metric. [PCES]: Percentage of a UI XML file that can be constructed
by CESs. The idea behind this metric is that what percentage of a UI XML file
can be constructed from its corresponding CESs. One UI XML file can contain
different CESs, since different parts of a UI XML file can be repeated in other
UI XML files. As a result, this metric is the union of the corresponding CESs for
a UI XML file divided by the total number of UI elements in it.

11

For example, the UI XML file shown in Figure 2 which is constructed from 6
UI elements, has a CES consisting of four UI elements. As a result, PCES for this
UI XML file is 0.66, meaning that 66% of the UI XML file is constructed from
CESs that are occurred in other UI XML files. In each category, we calculate
PCES for each UI XML file. Then, we use the average of all calculated PCES for
each UI XML file to calculate the PCES for a category.

Metric. [FAC]:Files Associated with CESs (FAC). While the above metric
give the overall statistic of the usage of CESs for a subject category, it cannot
tell us whether the CESs are from some specific UI XML files, or scattered
among many UI XML files all over a category. FAC provides the statistics per
category. We consider that a UI XML file is associated with CESs if it has at
least one common element set that is used in at least one other UI XML file. For
calculating FAC in a category, we divide the number of UI XML files that use at
least one common CES by the total number of UI XML files in the category. For
example, when FAC of a category is 0.5, it means that 50% of the UI XML files
in the category use at least one CES.

To answer RQ1.b, we are interested to know whether CESs happen only
within categories or they are also available across categories. If yes, we can
generalize our conclusions that CESs can be found in each category. To measure
the similarity between the CESs from every pair of two categories, we calculate
the Jaccard Similarity Coefficient (JSC) [24] between the CESs from one category
and the CESs from the other category. The Jaccard Similarity Coefficient is
used for comparing the similarity and diversity of sample sets. The Jaccard
coefficient measures the similarity between finite sample sets. JSC is calculated
using Equation (5).

JSC(P1, P2) =
|P1 ∩ P2|
|P1 ∪ P2|

, (5)

Where P1 and P2 are the sets of all CESs extracted by the method mentioned
in Section 3.2 from two categories (e.g., Shopping and Health).

We are also interested to compare the chances of CESs occurring across
categories against the chances of randomly chosen sets of UI elements occurring
across categories. For a category, we randomly obtain 100 sets of UI elements.
The size of a chosen set ranges from 3 to the size of the largest CES in the
category. To compare the similarity between the random sets of UI elements from
two categories, we use Equation (5).

Findings. Here, we present our empirical results for RQ1.a and RQ1.b.
Results for RQ1.a. Our results in Table 4 suggest that on average 60% of

a UI XML file can be constructed by similar CESs that are repeated in other UI
XML files (See Figure 4). Such a high percentage suggests that most UI XML
files use some standard UI elements (e.g., RelativeLayout, FrameLayout, and
LinearLayout).

Results in Figure 5 show that, on average, 77% of the UI XML files in a
category use at least one CES from other UI XML files in the corresponding

12

P
e
rc

e
n
ta

g
e
 o

f
T
o
ta

l
E

le
m

e
n
ts

 R
e
u
s
e
d

0
2
0

4
0

6
0

8
0

1
0
0

shopping

health

transportation

travel

new
s

w
eather

finance

social

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Fig. 4: Percentage of a UI XML file that can be constructed by CESs (PCES) in each
category

P
e
rc

e
n
ta

g
e
 o

f
F

ile
s
 A

s
s
o
c
ia

te
d
 w

it
h
 P

a
tt
e
rn

s

0
2
0

4
0

6
0

8
0

1
0
0

shopping

health

transportation

travel

new
s

w
eather

finance

social

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Fig. 5: Percentage of Files Associated with CESs in each category

category, which indicates that very few UI XML files are unique. We observe
that the Weather and Finance categories have the highest FAC. The reason is
that, for instance, in the Weather category there exist several applications that
have exactly the same UI, but are made for different countries, and in different

13

Table 3: Jaccard similarities between CESs from a pair of categories.

Categories Shopping Health
Transpor

Travel News Weather Finance Social
tation

Shopping 100%
Health 30.92% 100%

Transportation 23.48% 23.16% 100%
Travel 22.71% 23.16% 26.71% 100%
News 21.22% 21.18% 24.73% 26.92% 100%

Weather 25.51% 25.45% 25.16% 26.71% 24.73% 100%
Finance 24.89% 23.79% 25.90% 24.55% 25.19% 25.90% 100%
Social 25.84% 33.61% 24.91% 23.53% 26.82% 24.91% 23.66% 100%

Table 4: Jaccard similarity between random sets of UI elements from a pair of categories.

Categories Shopping Health
Transpor

Travel News Weather Finance Social
tation

Shopping 100%
Health 15.5% 100%

Transportation 12.5% 12% 100%
Travel 11% 11.5% 14% 100%
News 10.5% 10% 13% 14.5% 100%

Weather 13.5% 13% 13.5% 15% 14% 100%
Finance 13% 13% 14% 13% 13.5% 14% 100%
Social 13.5% 16% 13% 12.5% 12.5% 11% 12% 100%

languages (e.g., the Houston and WLOX weather applications). As a result, FAC
is higher in this category.

Results for RQ1.b. Table 3 reports the proportion of CESs that occur
across different categories. Each cell of this category is the calculated JSC (see
Equation 5) for the CESs extracted from the corresponding two categories
indicated by corresponding column and row (e.g., Shopping and Health). As
shown in Table 3, there exist, on average, around 23% of CESs across different
categories which means that similar patterns across different categories. Table 4
shows the proportion of random sets of UI elements that occur across different
categories. As shown in Table 4, on average, only 10%-15% of the randomly
obtained sets of UI elements occur across different categories.

�

�

	
Common UI Element Sets are widely used within and across
categories. More specially, on average, 77% of in a category
use, at least, one common UI element set, and 23% of the
CESs from any two domains are similar.

14

RQ2: Do the usage of commonly used UI element sets impact the
user-perceived quality within and across categories?

Motivation. In RQ1, we show that CESs widely occur within and across cate-
gories. It implies that the common element sets widely occur. In this research
question, we want to show whether using common UI element sets (CESs) can
provide better user-perceived quality or not.

Approach. In this research question, we focus on CESs, and measure whether
using a common element set can provide good user-perceived quality or not.
Therefore, we map each CES with user-perceived quality in the following steps:

S1. As mentioned in Section 3.2, we extract CESs from the UI XML files from all
applications in each category. Each application has a user-perceived quality
value (UPQ(A)) calculated by Equation (1), and consists of several UI
XML files. To compute the user-perceived quality for each UI XML file, we
assign each UI XML file with the user-perceived quality obtained from the
application that those UI XML files belong to. As a result, all the UI XML
files from the same application acquire the same user-perceived quality.

S2. Each CES can be related to multiple UI XML files. To assign the calculated
user-perceived quality for each UI XML file to each CES, we use the average
of the calculated UPQ (See Equation (1)) of the corresponding UI XML files.

Once we obtain the user-perceived quality values for CESs, we want to
determine:

RQ2.a) Can CESs from other categories provide a better user-perceived
quality in a category?

RQ2.b) What kind of characteristics of a CES can provide a high user-
perceived quality within a category?

To answer RQ2.a, we find the CESs that occur between each two categories
(i.e., source category and destination category) among all of the 8 categories.

We define two concepts: shared and non-shared CESs. A CES is a shared
CES if the CES occur in both source and destination categories (i.e., The source
is Shopping and the destination is Health). A CES is a non-shared CES if the
CES is from the source category, but does not occur in the destination category.

We test the following null hypothesis in RQ2.a for each source category and
the other destination category:

H1
0 : There is no difference in the user-perceived quality of a shared CES and

a none-shared CES.
We perform a Wilcoxon rank sum test [20] to evaluate H1

0 . To control family-
wise errors, we apply Bonferroni correction that adjusts the threshold p-value by
dividing the number of tests. The number of tests is 56 since we have 8 different
categories as the source categories and 8 different categories as the destination
categories. Moreover, we do not evaluate H1

0 if the source and destination cate-
gories are the same. There exists a statistically significant difference, if p-value is
less than 0.05/56=0.0007.

15

To answer RQ2.b, we are interested to know whether certain specifications of
CESs (see Section 3.2) can provide better user-perceived quality or not. To this
end, we sort the CESs based on their user-perceived quality for each category.
Then, we break the data into four equal parts (4 quartiles): (1) Q1 has the
CESs with the highest user-perceived qualities in the highest quartile; (2) Q2 has
the CESs with the high user-perceived quality; (3) Q3 has the CESs with the
low user-perceived quality; (4) Q4 has the CESs in the lowest quartile. Finally,
we observe whether there exists any difference in the computed metrics (i.e.,
quantifiers of certain characteristics of CESs) between CESs that are related to
UI XML files with high and low user-perceived quality. We test the following null
hypothesis for each metric (i.e., CDM, DCM, and CSM) in each category.

H2
0 : there is no significant difference in certain specifications of CESs between

the ones related to UI XML files with the high and low user-perceived quality.
We perform a Wilcoxon rank sum test [20] to evaluate H2

0 . Again, to control
family-wise errors, we apply Bonferroni correction which adjusts the threshold
p-value by dividing the number of tests. The number of tests is 24 since we
have 8 different categories and three different metrics (i.e., CDM, DCM, and
CSM) to quantify the different characteristics of CESs. There exists a statistically
significant difference, if p-value is less than 0.05/24=0.002.

Table 5: The results of our Wilcoxon rank sum tests on the differences of CESs that
occur within each pair of categories in the user-perceived quality. Only significant results
with a p-value < 0.007 are reported.

XXXXXXXXXSource
Destination Shopping Health Transpor Travel News Weather Finance Social

tation
Shopping ↘ * ↘ ◦ ↘ ◦ ↘ * ↘ *

Health ↗ * ↗ * ↗ * ↗ * ↗ *
Transportation ↗ * ↗ *

Travel ↘ * ↘ * ↘ * ↘ *
News ↘ * ↘ * ↘ * ↘ * ↘ *

Weather ↗ * ↗ +
Finance ↗ * ↗+ ↗+ ↗+
Social ↗+ ↘+ ↗ +

Given the source and destination categories, ↘ means that the average user-perceived
quality (UPQ) of the shared CESs, shared between source and destination categories,
is less than the average UPQ of non-shared CESs, not used in the destination category.

It is vice-versa for ↗.
(p<0.0007/50?; p<0.0007/5◦; p <0.0007+)

Findings. We present our findings for RQ2.a and RQ2.b.
Results for RQ2.a The results in Table 5 show that using the CESs that are

used in other categories can provide a significant difference in the user-perceived
quality (UQP) within categories in certain cases. Therefore, we can reject H1

0 .

16

More specifically, our results in Table 5 can help a developer to choose a
proper CES. For example,

E1. If the developer wants to design an application in Health category (as a
source category), he or she should choose the shared CESs having a “↗”
with a smaller p-value in the following five categories (destination categories):
Shopping, Transportation, Travel, News, and Finance. It is because the
shared CESs in Health and any of the above destination category can make
a positive impact on the UQP. In Table 5, given the source and destination
categories, ↗ means that the average user-perceived quality (UPQ) of the
shared CESs, shared between source and destination categories, is more than
the average UPQ of non-shared CESs, not used in the destination category.
It is vice-versa for ↘.

E2. If the developer wants to design an application in Social category (as a source
category), he or she should not choose the shared CESs in News category
(as a destination), but the categories of Transportation and Weather. It is
because the shared CESs in Social and News can hurt the UQP.

E3. If the developer wants to design an application in Shopping, Travel, and News,
he or she should have their own special UI designs instead of using shared
CESs. It is because all of the shared CESs with a statistically significant
difference have a “↘”.

Overall, our results suggest that the shared CESs with a “↗” should be used by
developers.�

�
�
�

CESs used across categories can provide a significant dif-
ference in the user-perceived quality. However, this phe-
nomenon is category dependent.

Results for RQ2.b. Table 6 shows whether there exists any difference in
certain characteristics of CESs with high user-perceived quality (UPQ) and CESs
with a low UPQ. For instance, we take the first cell for Shopping category in
Table 6 as an example. Similar to Table 5, there is a “↗” or “↘” sign which
shows that whether the average difference in the distribution of the corresponding
metric (i.e., here it is CDM) between the CESs with a high UPQ and the CESs
with a low UPQ is positive or negative. In this example, it is negative (“↘”)
which means that the CESs with a high UPQ tend to have a smaller value of
Common element set Distribution Metric (CDM) than the ones with a low UPQ.
Moreover, we report whether the difference for the corresponding metric (i.e.,
CSM) is statistically significant between the CESs with a high UPQ and the
CESs with a low UPQ. In this example, the difference is statistically significant
(?).

As shown in Table 6, we can reject H2
0 , and conclude that, in most categories,

CESs with the high user-perceived quality tend to have a smaller value of
Common element set Distribution Metric (CDM). In other words, CESs with
the high user-perceived quality tend to be used in fewer applications or to be

17

Table 6: The results of our Wilcoxon rank sum tests on the differences in the usage
of different characteristics, CDM, DCM, and CSM, of CESs within various categories.
Only significant results with a p-value < 0.002 are reported.

CDM DCM CSM

Shopping ↘ * ↗ * ↗ *

Health ↘ * ↗ ◦
Transportation ↘ ◦
News ↘ * ↗ +

Weather ↘ *

Travel ↗ * ↗ * ↗ ◦
Finance ↗ *

Social ↘ * ↗ * ↗ *
Given a metric that quantifies the characteristics of a CES, ↘ means that the value of
the metric for CESs with the high user-perceived quality is less than that of the metric

for CESs with the low user-perceived quality. It is vice-versa for ↗.
(p<0.002/50?; p<0.002/5◦; p <0.002+)

used in more UI XML files of one application than the CESs with the low user-
perceived quality. Overall, CESs with the high user-perceived quality (UPQ) do
not distribute widely. It could be because the number of the mobile applications
with a high UPQ is much smaller than that of mobile applications with a low
(UPQ). Moreover, we can observe that CESs with a high user perceived quality
tend to have a higher Developer-customized Common element set Metric (DCM)
which means that they tend to have more developer-customized UI elements by
the developers. In some categories including Shopping, Health, Travel, Finance,
and Social, the personalization is desired by users. Therefore, the CESs with a
high UPQ can have more developer-customized Common UI element sets. As a
result, being more unique may provide the better user-perceived quality for a UI
design. �

�
�
�

CESs with the high user-perceived quality tend to be dis-
tributed in fewer applications.

RQ3: Do the usage of commonly UI element sets have an impact on
the user-perceived quality of functionalities in mobile applications?

Motivation. As shown in RQ2, CESs from certain categories, with certain
specifications can improve the user-perceived quality in general. Each mobile
application is designed with a purpose to fulfill some certain functionalities for
its users. In this research question, we go into more details, and study whether
there are certain characteristics (i.e., see Section 3.2) of CESs that result in high
or low user-perceived quality in each functionality. If yes, we can highlight the
characteristics of CESs that can lead to the high user-perceived quality in each
functionality with a lower level of granularity.

18

Approach. To answer this research question, we first need discover functionalities
of an application. Then, we need link a user perceived quality value with a CES
in a functionality.

Discovering functionalities. For each UI XML file, we extract all of the
strings and labels shown to the users (see Section 3.2). Each file with a set of
extracted strings and labels becomes a document. We apply LDA on all of the
documents from the existing applications in a category.

Since mobile applications usually perform a limited number of functionalities,
the number of topics (i.e., K) should be small in our research context. As we
are interested in the major functionalities of applications, we empirically found
that K = 9 is a proper number for our dataset by manual labeling and analysis
of randomly selected mobile applications. We use MALLET [25] as our LDA
implementation, which uses Gibbs sampling to approximate the distribution of
topics and words. We run the LDA with 1000 sampling iterations. The number of
sampling iterations should be a trade off between the time taken to the complete
sampling and the quality of the topic model. In this study, we manually found that
1000 (i.e., default value) is a good choice for the number of sampling iterations.
Moreover, we use the parameter optimization in the tool to optimize α and β.
To compare the characteristics of CESs extracted from different UI XML files,
we label each UI XML file with a fine-grained functionality.

Mapping the user-perceived quality to a CES for a functionality.
In our corpus, for each category, we have n UI XML files (extracted from the
applications in the corresponding category) χ = {x1, ..., xn}, and we name the
set of our topics (i.e., functionalities) F = {f1, ..., fK}. It is important to mention
that these functionalities are different in each category, but the number of them
is the same (K = 9). For instance, f3 in the Shopping category is about “Login”
and “Sign in” functionality. However, in the Health category, it is about “search”
and “information seeking” functionality. LDA automatically discovers a set of
topics (i.e., F), as well as the mapping (i.e., θ) between the LDA topics and the
UI XML files. We use the notation θij to describe the topic membership value of
a topic fi in a UI XML file xj .

The UPQ of a UI XML file from a functionality can originate from two
sources: (1) the user-perceived quality of its corresponding application, and (2)
the probability that the UI XML file belongs to a functionality. Applying the
LDA [21] on UI XML files (documents) acquires a weight of relevance to each
functionality (i.e., θ). We use a cut-off threshold for θ (i.e., 0.1) that determines
if the relatedness of a UI XML file (document) to a functionality is important or
not. A similar decision has been made by Chen et al. [26]. Therefore, we calculate
the user-perceived quality for each UI XML file (xj) in a functionality as the
following:

AUPQ(xj) = θij ∗ UPQ(xj), (6)

Where AUPQ(xj) reflects the user-perceived quality for a UI XML file j (i.e.,
xj); θij is the generated probability by LDA that indicates the relatedness between
a UI XML file j (xj) and a functionality i (fi); UPQ(xj) is the user-perceived
quality of the application which xj belongs to it.

19

Each CES can be related to multiple UI XML files. Each XML file in a
functionality has an AUPQ. To assign a user-perceived quality (UPQ) value to a
functionality related to a CES, we calculate the average AUPQ (see Equation
(6)) of the UI XML files related to the functionality and the CES.

We sort the CESs based on their user-perceived quality for each functionality
in each category. Then, we break the data into four equal parts, and named the
ones in the highest quartile, CESs that are related to UI XML files with the high
user-perceived quality, and the ones in the lowest quartile, CESs that are related
to UI XML files with the low user-perceived quality. Finally, we investigate
whether there exists any difference in the distribution of the characteristics of
CESs (i.e., see Section 3.2) between the CESs with the high UPQ and the ones
with the low UPQ for each functionality in each category. To this end, we test the
following null hypothesis for each metric in each category for each functionality:

H3
0 : there is no difference in the defined characteristics (our defined three

metrics: CDM, DCM, and CSM) between the CESs with a low UPQ and the ones
with a high UPQ for a functionality.

We perform a Wilcoxon rank sum test [20] to evaluate H3
0 . To control family-

wise errors, we apply Bonferroni correction which adjusts the threshold p-value
by dividing the number of tests. The number of tests is 216 since we have 8 dif-
ferent categories and 3 different calculated RES characteristics among 9 different
functionalities. There exists a statistically significant difference, if p-value is less
than 0.05/216=0.0002.

Findings. Table 7 shows our findings for the calculated metrics on CESs with a
statistically significant difference, i.e., Common elements set Distribution Metric
(CDM), Developer-customized Common element set Metric (DCM), Common
elements set Size Metric (CSM) for each functionality in each category. Based
on the results in Table 7, we can reject H3

0 , and conclude that there exists a
significant difference in certain characteristics of CESs related to the UI XML
files with a low UPQ and the ones with a high UPQ.

For each cell of Table 7, we report two pieces of information. For example,
in the cell at the row of CDM in the Shopping category and the column of
the f3 referring to “Login” and “Sign in” functionalities, there is a “negative”
(“↘”) that means that CESs, related to the UI XML file for “Login” and “Sign
in” functionality (i.e., f3) in the Shopping category with a low UPQ, have
more complexity for CDM than the ones with a high UPQ, with a statistically
significant difference (?).

We make the following observations:

[O1.] In most cases, the difference is a negative number (“↘”) for CDM, meaning
that CESs from the UI XML files with a low UPQ tend to have a less CES distri-
bution than the ones with a high UPQ. In other words, to develop a functionality,
better CESs tend to be used in fewer applications or to be used in more UI XML
files than the CESs from the UI XML files with a low UPQ.

20

Table 7: The results of Wilcoxon rank sum tests on the differences of usage of three
metrics between the activities with low user-perceived quality (UPQ) and the ones with
high UPQ for each functionality in each category. Only significant results with a p-value
< 0.0002 are reported.

f1 f2 f3 f4 f5 f6 f7 f8 f9

Shopping
CDM ↘? ↘? ↘? ↘? ↘? ↘? ↘? ↘? ↘?

DCM ↗? ↗? ↗? ↗? ↗+ ↘?

CSM ↘? ↘? ↘+ ↘? ↘?

Health
CDM ↘? ↘? ↘? ↘? ↘◦ ↘? ↘? ↘?

DCM ↘? ↘◦ ↘◦ ↘? ↗◦

CSM ↘? ↗? ↘? ↘?

Transportation
CDM ↘? ↘? ↘? ↘? ↘? ↘+ ↘+ ↘?

DCM ↘◦ ↗? ↘◦ ↗◦ ↘? ↘?

CSM ↘? ↗?

News
CDM ↘? ↘? ↘? ↘◦ ↗+ ↘? ↘?

DCM ↘? ↗? ↘?

CSM ↗◦ ↗? ↘+

Travel
CDM ↘? ↘? ↘? ↘? ↘? ↘? ↘?

DCM ↗? ↘? ↘+

CSM ↘? ↗?

Weather
CDM ↘? ↘? ↘+ ↗?

DCM ↗? ↗◦

CSM ↗+ ↘?

Finance
CDM ↘? ↘? ↘? ↘? ↘+ ↗ ↘? ↗?

DCM ↘? ↗? ↗? ↗+ ↘? ↗?

CSM ↘◦ ↗+ ↘◦ ↗?

Social
CDM ↘? ↘? ↘? ↘◦ ↘? ↘+ ↗◦

DCM ↘? ↗? ↗◦ ↗? ↘?

CSM ↘? ↘?

Given a metric that quantifies a characteristic of a CES, ↘ means that the value of
such a metric for the CES with a high UPQ is less than the ones with a low UPQ, and

it is vice-versa for ↗.
(p<0.0002/50?; p<0.0002/5◦; p <0.0002+)

21

[O2.] As demonstrated in Table 7, using developer-customized elements in CESs
for a few functionality in several categories, such as Social, can have an impact
on the user-perceived quality. For example, in the shopping category for “Login”
and “Sign in” functionality (i.e., f3), if developers use CESs having developer-
customized UI elements, they may have UI XML files with the high user-perceived
quality. Our guidelines can be exploited by developers to use the proper CESs to
have functionalities with high user-perceived quality.�

�

	
In almost every functionality, to achieve the high user-
perceived quality, it is better to use the CESs that are used
in a few number of applications, or used in more UI XML
files.

RQ4: Can we extract UI templates from commonly used UI element
sets with a high user-perceived quality?

Motivation. In the previous research questions, we show that CESs are used
widely within and across categories. The characteristics of CESs can make an
impact on the user-perceived quality. To utilize our findings in the previous RQ,
practical guidelines using CESs are needed for developers. For example, when
a developer wants to design a login page for her application in the Shopping
category, based on the guidelines, the developer can know which characteristics
of a UI element set can help achieve a high UPQ (answered in RQ3). In addition,
the developer needs to know which meaningful combination of UI elements (i.e.,
a UI template) can provide the high user-perceived quality in a certain (e.g.,
login) functionality (the aim of RQ4).

Approach. To provide more detailed and practical guidelines for developers, we
go beyond the characteristics of CESs, and extract UI templates with a high
UPQ for a limited number of functionalities. UI templates, summarized from
CESs, are standard and reusable solutions for building UIs of mobile applications.

To extract UI templates for certain functionalities, we focus on a more fine-
grained functionality than the ones extracted in RQ3. As shown in our previous
research question, to further analyze the characteristics of CESs, we cluster the UI
XML files since they encompass a variety of different functionalities. To this end,
we used LDA [21] as our approach to extract high-level functionalities. However,
each functionality that is produced by the LDA is a high-level functionality, and it
contains a variety of sub-functionalities. For example, for the third functionality
extracted in the Shopping category (i.e., f3), Table 8 shows the words that
describe f3. As shown in Table 8, UI XML files related to f3 are about a high
level functionality (i.e., sign-in and login). However, it also contains other sub-
functionalities (e.g., sharing a page). As a result, recommending a good UI
template for sub-functionalities is necessary. For each high-level functionality,
through a manual analysis, we scan the name of the UI XML files associated with
the high user-perceived quality CES, and extract more fine-grained functionalities

22

(i.e., sub-functionalities). Then, we observe whether the CESs are eligible to be
introduced as a UI template or not.

Table 8: List of related words for Login/Sign in functionality in the Shopping category

Functionality Related Words

Login/Sign in
email, password, account, sign, login, share, facebook, save, deals
register, address, find, home, send, enter, create, cancel, friends, store

To demonstrate the usefulness of our results, we did the manual analysis for
Shopping category. For each high-level functionality extracted from RQ3, we
extract the CESs with the high user-perceived quality. Then, we manually analyze
the name of the associate UI XML files, and identify which sub-functionality
can be extracted using the extracted CESs, and we further analyze the CESs to
study the candidates for UI templates.

Findings. As demonstrated in Table 9, we successfully manually extracted
a limited set of lower level functionalities and their corresponding high user-
perceived quality templates from the Shopping category. We also report the
frequency of occurrences of each UI template among UI XML files. For each
sub-functionality, we provide a set of UI elements (i.e., a UI template) that
have been used frequently within the UI XML files of its corresponding sub-
functionality. Our recommended UI templates can give developers an idea that
what UI elements should be used together to achieve high user-perceived quality
in designing a UI XML file for a certain functionality.

For example, for the Sign in sub-functionality from Table 9, we recommend a
UI template that has been frequently (i.e., 43 times) used by high user-perceived
quality UI XML files in this sub-functionality. A sample part of this UI template
is shown in Figure 2. Our recommended UI template includes the following
elements for entering the username and password:

– An AutoCompleteTextView element is an editable TextView that automati-
cally shows completion suggestions while the user is typing.

– A TextView element displays a text to the user and optionally allows them
to edit it.

Our recommended UI template shows that UI XML files with the high user-
perceived quality related to the Sign in functionality use an AutoComplete-
TextView element instead of a simple TextView element for having an extra
feature for auto-completing the username.

This UI template also contains:

– a CheckBox element possibly for remembering the username or/and password;
– an ScrollView element to make the page scrollable in case that the page does

not fit in the screen of a smart phone;

23

T
a
b
le

9
:

U
I

te
m

p
la

te
s

fo
r

d
iff

er
en

t
su

b
-f

u
n
ct

io
n
a
li
ti

es

S
u
b
-f
u
n
c
ti
o
n
a
li
ty

U
I

T
em

p
la

te
F

re
q
u
en

cy
o
f

O
cc

u
rr

en
ce

U
se

r
a
g
re

em
en

t
S
cr

o
ll
V

ie
w

,
W

eb
V

ie
w

,
F

ra
m

eL
ay

o
u
t,

T
ex

tV
ie

w
,

L
in

ea
rL

ay
o
u
t,

P
ro

g
re

ss
B

a
r

2
1

P
ri

va
cy

P
o
li
cy

V
ie

w
,

S
cr

o
ll
V

ie
w

,
B

u
tt

o
n
,

T
ex

tV
ie

w
,

R
el

a
ti

v
eL

ay
o
u
t,

L
in

ea
rL

ay
o
u
t

2
6

S
ig

n
in

A
u
to

C
o
m

p
le

te
T

ex
tV

ie
w

,
C

h
ec

k
B

ox
,

R
el

a
ti

v
eL

ay
o
u
t,

L
in

ea
rL

ay
o
u
t,

T
ex

tV
ie

w
,

4
3

S
cr

o
ll
V

ie
w

S
u
g
g
es

t
p
a
g
e

T
a
b
H

o
st

,
V

ie
w

A
n
im

a
to

r,
L

is
tV

ie
w

,
C

o
m

,
T

ex
tV

ie
w

,
L

in
ea

rL
ay

o
u
t,

P
ro

g
re

ss
B

a
r,

1
6

B
u
tt

o
n

A
cc

o
u
n
t

P
ro

fi
le

T
a
b
le

R
ow

,
C

o
m

,
Im

a
g
eV

ie
w

,
B

u
tt

o
n
,

T
a
b
le

L
ay

o
u
t,

L
in

ea
rL

ay
o
u
t,

T
ex

tV
ie

w
1
0

D
a
te

T
im

e
D

a
te

P
ic

k
er

,
T

im
eP

ic
k
er

,
S
cr

o
ll
V

ie
w

,
Im

a
g
eV

ie
w

,
B

u
tt

o
n
,

R
el

a
ti

v
eL

ay
o
u
t,

T
ex

tV
ie

w
,

2
9

L
in

ea
rL

ay
o
u
t

P
h
o
to

p
re

v
ie

w
G

a
ll
er

y,
B

u
tt

o
n
,

R
el

a
ti

v
eL

ay
o
u
t,

T
ex

tV
ie

w
,

L
in

ea
rL

ay
o
u
t,

Im
a
g
eV

ie
w

3
1

C
o
n
fi
g
u
re

p
h
o
to

R
eq

u
es

tF
o
cu

s,
E

d
it

T
ex

t,
F

ra
m

eL
ay

o
u
t,

S
cr

o
ll
v
ie

w
,

Im
a
g
eV

ie
w

,
B

u
tt

o
n
,

2
7

R
el

a
ti

v
eL

ay
o
u
t,

T
ex

tV
ie

w
,

L
in

ea
rL

ay
o
u
t

A
d
d
re

ss
en

tr
y

B
r,

L
in

ea
rL

ay
o
u
t,

T
ex

tV
ie

w
,

R
el

a
ti

v
eL

ay
o
u
t,

B
u
tt

o
n
,

S
cr

o
ll
V

ie
w

,
E

d
it

T
ex

t,
S
p
in

n
er

1
9

S
h
o
p
p
in

g
C

a
rt

Im
a
g
eB

u
tt

o
n
,

V
ie

w
,

P
ro

g
re

ss
B

a
r,

C
o
m

,
E

d
it

T
ex

t,
R

el
a
ti

v
eL

ay
o
u
t,

T
ex

tV
ie

w
,

1
2

L
in

ea
rL

ay
o
u
t,

S
cr

o
ll
V

ie
w

,
B

u
tt

o
n
,

Im
a
g
eV

ie
w

S
ea

rc
h

R
eq

u
es

tF
o
cu

s,
V

ie
w

,
P

ro
g
re

ss
B

a
r,

L
is

tV
ie

w
,

S
cr

o
ll
V

ie
w

,
Im

a
g
eV

ie
w

,
R

el
a
ti

v
eL

ay
o
u
t,

3
3

T
ex

tV
ie

w
,

L
in

ea
rL

ay
o
u
t,

C
o
m

O
rd

er
d
et

a
il

T
a
b
le

R
ow

,
L

is
tV

ie
w

,
S
cr

o
ll
V

ie
w

,
T

ex
tV

ie
w

,
T

a
b
le

L
ay

o
u
t,

B
u
tt

o
n
,

R
el

a
ti

v
eL

ay
o
u
t,

1
6

Im
a
g
eV

ie
w

V
o
te

/
R

a
te

R
a
ti

n
g
B

a
r,

C
o
m

,
L

in
ea

rL
ay

o
u
t

3
7

S
et

ti
n
g
s

V
ie

w
,

C
h
ec

k
B

ox
,

L
in

ea
rL

ay
o
u
t,

T
ex

tV
ie

w
,

P
ro

g
re

ss
B

a
r,

E
d
it

T
ex

t,
B

u
tt

o
n

2
5

24

– a Button element for submitting the username and password for the sign in
procedure;

– two page formatting elements:
• A LinearLayout element arranges its elements in a single column or a

single row
• A RelativeLayout element allows for relative positioning of its elements

in relation to each other or the parent.�

�

	
Through a manual analysis, we can successfully recommend
UI templates related to UI XML files with the high user-
perceived quality for certain functionalities in the Shopping
category.

5 Threats to Validity

We discuss the threats to validity of our study following common guidelines for
empirical studies [27].

5.1 Construct Validity

In this paper, it is mainly due to the measurement errors. Szydlowski et al. [28]
discuss the challenges for dynamic analysis of iOS applications. They mention that
these challenges are mostly user interface driven. That is, most iOS applications
make heavy use of event driven graphical user interfaces. Therefore, launching an
application and executing it for a given span of time might not be sufficient to
collect all execution paths in an application. Due to such challenges, we were not
able to use dynamic analysis to reverse engineer the UI of mobile applications
for a large scale study. Also a similar static analysis approach has been used
satisfactorily by Shirazi et al. in a similar study on the user interfaces of mobile
applications [29]. Moreover, there are two ways to declare a UI layout for an
activity in the Android architecture: i) Declaring UI elements in an XML file and
ii) Instantiating layout elements programmatically. In this study, our premise
is towards the UI elements that are declared in a UI XML file, since it is the
recommended approach by Android guidelines [10].

5.2 Internal Validity

The internal threats are mainly from our selection of subject systems, tools, and
analysis method. The accuracy of using Apktool for parsing APKs into XML files
impacts our results. However, the Apktool is widely used in the academic research.
The choice of the optimal number of topics in LDA is a difficult task [30]. However,
through a manual analysis approach, we found that in all categories there exist
at least 9 common functionalities. We choose 1, 292 mobile applications from 8
different categories, due to the variety in user-perceived qualities and domains

25

of applications. We excluded gaming applications, as the gaming applications
tend to use graphical engines and other techniques for building the UIs. As a
result, our approaches for extracting the UIs of such applications are not mature
enough to handle these type of applications. We provide all the necessary details
to replicate our study.

5.3 External Validity

Though we have studied 1,292 free mobile applications from different categories
on the Android market, to generalize our results on other mobile stores or mobile
platforms, it is encouraged to perform additional studies on those environments.
Moreover, an analysis on more applications across more categories in Android
Market is always desired.

6 Related Work

In this section, we introduce the research on (1) mining mobile applications; and
(2) studying the UIs of mobile applications.

6.1 Mining Mobile Applications

Some research has been proposed to analyze mobile applications. For example,
Harman et al. [13] propose the App Store Mining, and discuss factors of success
for mobile applications. Their results show that there is a strong correlation
between the customer ratings and the number of downloads. In this paper, we
use this study as a motivation for defining factors that make an influence on
the user-perceived quality of mobile applications. Shabtai et al. [31] conduct a
formal study on Android APK files. The machine learning methods are applied to
build a classifier for Android games and tools to detect malwares. They achieved
89% of accuracy in classifying applications into these two categories. Minelli and
Lanza develop SAMOA [32], a new tool to help developers better understand
the development and evolution of their mobile applications by gathering and
visualizing basic source code metrics (e.g., size and complexity).

Following the same line of work as these studies, we also try to get more
insights about the characteristics of mobile applications by analyzing the existing
mobile applications on the Android Market. The aforementioned studies analyze
the source code of mobile applications to assess the characteristics and quality of
them. However, we focus on the UIs of mobile applications to assess the quality
(i.e., user-perceived quality). Shirazi et al. [29] analyze the 400 most popular
free Android applications to gain insights of UIs of mobile applications. However,
they did not provide any evidence that there exists a relation between different
characteristics of UIs (e.g., UI complexity) and user-perceived quality of mobile
applications. In this paper, we analyze the source code and the relation between
the constructed UI elements of mobile applications and the user-perceived quality
of mobile applications.

26

Some other research is on dynamic analysis of mobile applications. Dynamic
analysis refers to a set of techniques that monitor the behaviors of a program
while it is being executed.For example, AndroidRipper, an automated technique,
tests Android applications via their GUI [33]. An application’s GUI is explored
to construct the GUI tree of the corresponding application for testing purposes or
exercising it in a structured manner. Joorbachi et al. [34] presents a similar tool
for iOS called iCrawler, a reverse engineering tool for iOS mobile applications
that uses a state-machine model. It is capable of automatically detecting the
unique states of a mobile application. However, such approaches cannot be applied
on large scale studies due to the limitations of available dynamic GUI reverse
engineering techniques and computing resources. Instead, similar to Shirazi et
al. [29], we use a static analysis for GUI reverse engineering.

6.2 Studying the UI of Mobile Applications

Studying the UIs of mobile applications has raised interests in the research
community. For example, Nilsson suggests that experienced UI developers who
want to start developing UIs for mobile applications should start with UI templates
to develop their applications [35]. In this context, a pattern is a formalized
description of a proven concept that expresses non-trivial solutions to a UI design
problem. The primary goal of patterns in general is to create an inventory of
solutions to help UI designers resolve UI development problems that are common,
difficult and frequently encountered [36].

Software Engineering [37] practices adopted patterns as a way to facilitate
reuse of software. Software reuse has been studied widely in the literature. Hindle
et al. investigated the naturalness of software [38]. They show that code is very
repetitive, and in fact even more so than natural languages. They showed evidence
that code reuse is a common practice in software engineering. Moreover, in a very
large-scale study of code by Gabel and Su [39], they found that code fragments
of surprisingly large size tend to reoccur. As a result, software reuse is a common
practice in software engineering.

There has been some studies focusing on studying the extent of reuse in the
source code of mobile application as well. Ruiz et al. show that on average 61%
of all classes in each category of mobile applications occur in two or more appli-
cations [5]. Moreover, Chen et al. implement an approach to detect application
clones on Android market to detect malwares [40]. Another aspect of a mobile
application is its UI. Developers’ negligence in the importance of UI design is
one of the major reasons for users to abandon a task on mobile applications
and switch to PC [7]. User interface designers also have noticed that certain
design problems occurred over and over [35]. Having the same goal as software
engineering studies for code reuse, we study the extent of reuse for UI in Android
applications over 8 different categories (i.e., Shopping, Health, Transportation,
Travel, News, Weather, Finance, Social).

To the best of our knowledge, there have been no studies that investigate the
effect of the UI design on user-perceived quality. The question is whether using
frequently used UI elements can lead to better user-perceived quality or not.

27

7 Conclusion

In this paper, we perform a detailed case study using 1,292 free Android applica-
tions distributed in 8 categories to investigate the relations between commonly
used UI element sets, denoted as common element sets (CESs), and user-perceived
qualities of mobile applications. We propose various metrics for CESs to study
the characteristics of CESs.

Through our empirical results, we observe the following findings::

– Commonly used UI sets of Android applications are widely used within and
across different categories (RQ1);

– Certain characteristics of CESs can provide high user-perceived quality (RQ2,
RQ3);

– Through a manual analysis approach, we recommend standard and reusable
UI templates (i.e., a set of CESs with a high user-perceived quality) for
developers (RQ4).

In future work, we plan to replicate our study on more mobile applications
from other categories existing on the Android Market, other platforms.

References

1. “Number of free and paid mobile app store downloads worldwide from 2011 to 2017,”
2015. [Online]. Available: http://www.statista.com/statistics/271644/worldwide-
free-and-paid-mobile-app-store-downloads/

2. “Number of downloads for android apps,” June 2014. [Online]. Available:
http://www.gartner.com/newsroom/id/2592315

3. “Googles do-it-yourself app creation software,” July 2014. [Online]. Available:
http://www.nytimes.com/2010/07/12/technology/12google.html? r=0

4. V. R. Basili and H. D. Rombach, “Support for comprehensive reuse,”
Softw. Eng. J., vol. 6, no. 5, pp. 303–316, Sep. 1991. [Online]. Available:
http://dx.doi.org/10.1049/sej.1991.0032

5. I. Ruiz, M. Nagappan, B. Adams, and A. Hassan, “Understanding reuse in the
android market,” in Program Comprehension (ICPC), 2012 IEEE 20th Int. Conf.
on, 2012, pp. 113–122.

6. L. Chittaro, “Distinctive aspects of mobile interaction and their implications for
the design of multimodal interfaces,” J. on Multimodal User Interfaces, vol. 3, no. 3,
pp. 157–165, 2010.

7. A. K. Karlson, S. T. Iqbal, B. Meyers, G. Ramos, K. Lee, and J. C. Tang, “Mobile
taskflow in context: A screenshot study of smartphone usage,” in SIGCHI, 2010.

8. I. J. Mojica Ruiz, “Large-scale empirical studies of mobile apps,” Master’s thesis,
Queen’s University, 2013.

9. “Android apps quality,” Feb 2014. [Online]. Available:
http://developer.android.com/distribute/googleplay/quality/core.html

10. “Android guidelines,” Feb 2014. [Online]. Available:
http://developer.android.com/guide/developing/building/index.html

11. “Number of android apps,” Feb 2014. [Online]. Available:
http://www.appbrain.com/stats/number-of-android-apps

28

12. “Different mobile platform’s market share,” Feb 2014. [Online]. Available:
http://www.macrumors.com/2014/01/27/iphone-share-strong-android-lead/

13. M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: Msr for app
stores,” in MSR, 2012.

14. S. E. S. Taba, I. Keivanloo, Y. Zou, J. Ng, and T. Ng, “An exploratory study on
the relation between user interface complexity and the perceived quality,” in Web
Engineering. Springer, 2014, pp. 370–379.

15. “apktool.” [Online]. Available: http://code.google.com/p/android- apktool/
16. “smali.” [Online]. Available: http://code.google.com/p/smali/
17. R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of

items in large databases,” in Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’93. New York, NY, USA: ACM,
1993, pp. 207–216. [Online]. Available: http://doi.acm.org/10.1145/170035.170072

18. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed
itemsets for association rules,” in Proceedings of the 7th International Conference
on Database Theory, ser. ICDT ’99. London, UK, UK: Springer-Verlag, 1999, pp.
398–416. [Online]. Available: http://dl.acm.org/citation.cfm?id=645503.656256

19. J. Pei, J. Han, and R. Mao, “Closet: An efficient algorithm for mining frequent
closed itemsets,” 2000, pp. 21–30.

20. D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures.
crc Press, 2003.

21. D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the J. of
machine Learning research, vol. 3, pp. 993–1022, 2003.

22. C. K. Roy and J. R. Cordy, “Are scripting languages really different?” in
Proceedings of the 4th International Workshop on Software Clones, ser. IWSC
’10. New York, NY, USA: ACM, 2010, pp. 17–24. [Online]. Available:
http://doi.acm.org/10.1145/1808901.1808904

23. R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey, “Cloning by accident: an
empirical study of source code cloning across software systems,” in Empirical
Software Engineering, 2005. 2005 International Symposium on, Nov 2005, pp. 10
pp.–.

24. P. Jaccard, “Étude comparative de la distribution florale dans une portion des
Alpes et des Jura,” Bulletin del la Société Vaudoise des Sciences Naturelles, vol. 37,
pp. 547–579, 1901.

25. A. K. McCallum, “Mallet: A machine learning for language toolkit,” 2002. [Online].
Available: http://mallet.cs.umass.edu

26. T.-H. Chen, S. W. Thomas, M. Nagappan, and A. E. Hassan, “Explaining software
defects using topic models,” in MSR, 2012.

27. R. K. Yin, Case study research: Design and methods. Sage, 2009, vol. 5.
28. M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna, “Challenges for dynamic

analysis of ios applications,” in iNetSec, 2012.
29. A. Sahami Shirazi, N. Henze, A. Schmidt, R. Goldberg, B. Schmidt, and

H. Schmauder, “Insights into layout patterns of mobile user interfaces by an
automatic analysis of android apps,” in SIGCHI, 2013.

30. S. Grant and J. Cordy, “Estimating the optimal number of latent concepts in source
code analysis,” in SCAM, 2010.

31. A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code analysis for classifying
android applications using machine learning,” in CIS, 2010.

32. R. Minelli and M. Lanza, “Samoa – a visual software analytics platform for mobile
applications,” in ICSM, 2013.

29

33. D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon,
“Using gui ripping for automated testing of android applications,” in ASE, 2012.

34. M. Joorabchi and A. Mesbah, “Reverse engineering ios mobile applications,” in
WCRE, 2012.

35. E. G. Nilsson, “Design patterns for user interface for mobile applications,” Advances
in Engineering Software, vol. 40, no. 12, pp. 1318–1328, 2009.

36. sa Granlund, D. Lafrenire, and D. A. Carr, “A pattern-supported approach to the
user interface design process,” 2001.

37. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

38. A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness
of software,” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 837–847.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2337223.2337322

39. M. Gabel and Z. Su, “A study of the uniqueness of source code,” in SIGSOFT
FSE’10, 2010, pp. 147–156.

40. K. Chen, P. Liu, and Y. Zhang, “Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets,” in
Proceedings of the 36th International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: ACM, 2014, pp. 175–186. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568286

