
CSER 2011 Spring Meeting - June 21, 2011 
Dunning Hall, Room 14, Queen's University 

 
Agenda and Registration Form 

 
The Consortium for Software Engineering Research (CSER) Spring 2011 Meeting will be held on 
Tuesday, June 21, 2011 and will take place at Dunning Hall, ROOM 14, Queen's University in 
Kingston.   
 
CSER-Kingston offers a great opportunity to get an update on the latest and greatest software 
engineering research throughout Canada in a wonderful city.  
 
This year's CSER will feature a set of mini-keynote talks by several new Canadian Software 
Engineering professors. CSER will also have two parallel interactive workshops, several talks, and a 
reception with over 20 posters. Please plan to attend and to actively participate! 
 
Would each Researcher/Principal Investigator and industrial participant please register your group 
by June 13, 2011 using the form on the next page. At the same time please email Ying Zou 
<ying.zou@queensu.ca> telling her how many faculty and students from your group will be 
attending. We need this so we can plan for the food. 
 
Students: Please remind your professor about the above! 
 
The registration fee for CSER Spring 2011 Meeting remains $150 for faculty members and industrial 
participants and $50 for students. In the past we had some difficulties in collecting the fees. We 
would really appreciate an expedient and timely submission of forms and payments. 
 
The poster session is organized by Dr. Foutse Khomh < foutse.khomh@queensu.ca>. Contact Foutse 
if you have any questions regarding posters.  
 
Queen's campus map is shown in page 2 (also available at http://www.queensu.ca/campusmap/). The 
talks will be taken place in Dunning Hall (i.e., building 16 in the map). The poster session and the 
reception will be held in Bioscience Complex Atrium (i.e., building 36 in the map). Paid day parking 
is available and marked as P in the attached map. 
 
We look forward to seeing you on June 21st in Kingston! 
 
Ying (Jenny) Zou 
Spring 2011 CSER meeting organizer 
 
 
 
 
 
 
 
 
 
 



2 
 

Queen's University Campus Map 
 

 
 
 
Accommodation 

Queen's University offers economical and premium rooms on campus.  

For example, Leggett Hall - Premium air-conditioned 2-bedroom units at the rate of $99.00 for 2-
bedroom unit (two rooms with one bathroom ).  13% HST is extra. 

You can find other rates for single rooms without air condition and the reservation information at 
http://eventservices.queensu.ca/4/conferencesandgroups.asp. 



3 
 

 
CSER 2011 Spring Meeting Registration Form 
Instructions: By June 13th, Please: 
Fax the following completed form to 1-613-482-4708 
 
Written confirmation of registration will be e-mailed. To facilitate meeting planning activities, it 
would be appreciated if the registration forms are received no later than June 13th, 2011. 
Your details (please duplicate if making multiple registrations) 
 
Name: (Family)_______________________(Given)_________________________________ 
 
Organization:________________________________________________________________ 
 
Mailing Address:_____________________________________________________________ 
 
City: _________________________ State/Province: _________ Zip/Post:_______________ 
 
Country: _______________________ 
 
Telephone: _________________________ Fax: ______________________________ 
 
Email Address:_________________________________________________________ 
 
Names of Students: 
 
1) _____________________________________ 2) _____________________________________ 
 
3) _____________________________________ 4) _____________________________________ 
 
5) _____________________________________ 6) _____________________________________ 
 
7) _____________________________________ 8) _____________________________________ 
Calculate fees Note: All Fees are in Canadian Dollars. 
 Fee Number of Persons TOTAL 
Faculty, industry or Govt. 
 

$150   

Students 
 

$50   

TOTAL    
 
Make payment by credit card: __ Visa __ MasterCard 
 
Card Number: __________________________________Expiration Date: Month _____ Year: ____ 
 
Cardholder Name: _____________________________  
 
Signature: _____________________________ 
 



4 
 

CSER Spring Meeting 2011 Agenda: Tuesday June 21 2011 
Dunning Hall, Room 14, Queen's University 
 
7:30 - 8:30 Board Meeting 
 
8:00 - 8:30 Continental Breakfast 
 
8:30 - 8:45 Welcome and Introduction (Ying Zou, Hausi Müller) 
 
8:45 - 10:30 Keynotes by Young Faculty Members,   

      Chaired by Hausi Müller, University of Victoria 

 Jeremy Bradbury, University of Ontario Institute of Technology  
 Producing High Quality Concurrent Software  
 In general, the development of high quality concurrent code is more difficult than the 

development of high quality sequential code. One reason for this difficulty is the many different, 
possibly unexpected, executions of a concurrent program. This talk will overview the current 
state-of-the-art in software quality assurance of concurrent software. In particular, concurrency 
testing, model checking and static analysis techniques will be discussed. 

 Lin Tan, University of Waterloo 
 Leveraging Software Semantic Information To Improve Software Reliability 
 Software bugs greatly hurt software reliability. In this talk, I will present our recent research that 

leverages software semantic information in program comments, source code, and commit logs to 
automatically detect software bugs and understand software developers. We automatically 
extract specifications from source code and code comments written in a natural language, and 
use these specifications to detect comment-code inconsistencies, i.e., software bugs and bad 
comments.  

  Detecting software bugs requires a good understanding of developers. Therefore, we study 
comment semantics and characteristics to understand what developer write in comments, how we 
can utilize the comments, and what important problems/limitations they reveal which can guide 
the design of new languages and tools for improving reliability, programmer productivity, 
software evolution, etc. Additionally, we analyze developers' commit metadata to understand the 
correlation between a commit’s "bugginess" and its social characteristics such as the time of day 
of the commit, the day of week of the commit, and the experience and commit frequency of the 
commit authors. 

 Chanchal Roy, University of Saskatchewan 
 Code Clone Detection and Management: Past, Present and the Future 
 Reusing code fragments by copying and pasting with or without minor adaptation is a common 

activity in software development. As a result software systems often contain sections of code that 
are very similar, called code clones. Previous research shows that a significant fraction (between 
7% and 23%) of the code in a typical software system has been cloned. While such cloning is 
often intentional and can be useful in many ways, it can be also be harmful in software 
maintenance and evolution. Detection and management of code clones thus becomes an active 



5 
 

and interesting research topic in recent years. In this talk, I will first present the state of the art in 
clone detection and management including what we have been doing in our group and then will 
outline the future trends in the area. 

 Reid Holmes, University of Waterloo 
 Improving Comprehension of Source Code Changes 

Software engineering is a human-centric activity. In this talk I will provide an overview of the 
research I perform with specific emphasis on a new project to that helps developers understand 
the dynamic impact of the changes they are making to their systems. While developers often 
have a strong understanding of the static nature of their changes, the dynamic effects of these 
changes on the runtime behaviour of the program can be harder to comprehend. This approach 
automatically classifies the impact of a developer's change so they can better understand the 
dynamic consequences their modification tasks. The overall goal of this project is to enable 
developers to reason about the dynamic behaviour of their systems in a way that helps prevent 
unintended behavioural changes from being made. 

10:30-11:00 Break 
 
Morning Talks      Chaired by Kenny Wong, University of Alberta  
 
11:00-11:20 Juergen Dingel, Queen's University 
Component-based development of reactive systems using protocol state machines and model 
checking 
Interfaces represent abstractions which are supposed to facilitate the correct use of an entity by 
listing the data and operations that the entity makes available and separating its externally visible 
parts from the internal ones. Arguably, this notion is one of the great success stories in computer 
science.  To further increase the utility of interfaces, numerous proposals have been made to enrich 
them with more specific information about how the interface elements are to be used. In this talk, I 
will discuss the potential of protocol state machines (PSMs) for facilitating the model-driven 
development of component-based systems in general and of reactive systems in particular.  I will 
summarize our recent work on using model checking for determining the compatibility of a 
component with respect to interface specifications using PSMs. 
 
11:20-11:40 Scott Grant, Queen's University 
Visualizations to Support Concept Location 
We explore the information provided by concept location techniques like Latent Dirichlet Allocation 
through three distinct visualizations.  Using this information, we demonstrate a relationship between 
topic models and co-maintenance history.  We also explain how these views of source code can give 
insight about the semantic architecture of the code, and why this information is actually important 
for software maintenance. 
 
11:40-12:00 Discussion 

12:00 - 13:00 Lunch 
 
 
 
 



6 
 

Afternoon Talks        Chaired by Jeremy Bradbury, University of Ontario Institute of Technology  
 
13:00 - 13:20 Kelly Lyons, University of Toronto 
Collaborative Decision Making 
In this University of Toronto / SAP joint project we are investigating tools and mechanisms to 
support cross-site collaborative decision making.  The goal of this research is to understand the 
phenomenon of collaboration within decision making, the use of social media to support 
collaboration in organizations, and the related issue of a changing workforce, and the corresponding 
impacts on both current and future products and services offerings.   In this presentation, we describe 
the results of three studies:  a survey of young people that provides some insight into the changing 
attitudes, behaviours, and norms of the future workforce and the impact of these changes on decision 
making; an analysis of collaborative user feedback mechanisms and the impact on software 
development decisions; and, an implementation and evaluation of a group decision-making 
technique that has been integrated into SAP StreamWork.  We also present next steps and future 
research 
 
13:20 - 13:40 Hua Xiao, Queen's University  
End-users Driven Service Composition for Constructing Personalized Service Oriented 
Applications 
Service composition integrates existing services to fulfill specific tasks using a set of standards and 
tools. However, current service composition techniques and tools are mainly designed for SOA 
professionals. It is challenging for end-users without sufficient service composition skills to 
compose services. In this presentation, we propose a framework that supports end-users to 
dynamically compose and personalize service recommendation to meet the goals of their daily 
activities. Instead of requiring end-users to specify detailed steps for the service composition, our 
framework only requires the end-users to specify the goals of their desired activities using a few 
keywords to generate an ad-hoc process. To acquire the desired data for service composition, we 
propose an approach to extract data needed for service composition from existing commercial 
applications on the Web. In addition, to provide personalized service recommendation, we present an 
approach to discover desired services for end-users based on the context of end-users. A set of case 
studies are conducted to evaluate our proposed approaches. The results show that our approaches can 
effectively extract process knowledge, recommend the desired services for end-users, and generate 
ad-hoc processes with relatively high precision and recall.  
 
13:40 - 14:00 Hausi Muller and Norha M. Villegas, University of Victoria  
Designing smart software systems: Context, control and run‐time validation  
The continuous evolution from goods‐centric to service‐centric businesses requires new and 
innovative approaches for building, running, managing and evolving smart business applications. 
The complexity of these modern, decentralized, user‐centric and distributed computing systems 
presents significant challenges for businesses. End‐users increasingly demand that businesses 
provide smart software systems that are flexible, resilient, location‐based, service‐oriented, 
decentralized, energy‐efficient, self‐healing. A system with such dynamic properties must be able 
reason at run‐time about its state, environment, and goals. One of the most promising approaches to 
achieving such properties is to equip software systems with feedback control and effective context 
management to deal with inherent system dynamics. Applications range from smart web services 
and location business intelligence to adaptive cloud scheduling and system diagnosis. Our innovative 
approach to orchestrate run‐time system adaptations is based on dynamic context and control theory 
and involves run‐time verification and validation. In the first part of this talk we will present selected 



7 
 

challenges that the software engineering research community must face to enable software systems 
with intelligent capabilities to address some of these system dynamics. In the second part of the talk, 
we will present an e‐commerce case study where feedback loops and dynamic context management 
techniques provide effective instrumentation to realize smart interactions as proposed in the vision of 
the Personal Web. 
 
14:00 - 14:20 Mehdi Amoui, University of Waterloo 
Graph-based Runtime Adaptation Framework (GRAF) 
One approach for achieving runtime adaptability in software is to use application frameworks that 
are tailored for the development of self-adaptive systems. In a collaborative research with University 
of Koblenz-Landau, we designed and developed the Graph-based Runtime Adaptation Framework 
(GRAF), which enables adaptivity by creating, managing, and interpreting graph-based runtime 
models of software. GRAF is especially suited for the migration of legacy applications towards 
adaptive software and attempts to reduce necessary changes to the original software. A scenario of 
evolving a legacy game engine towards providing adaptive behaviors will be presented to exemplary 
show how to achieve runtime adaptively with GRAF. 
 
14:20 - 15:00 Discussion 
 
15:00 - 15:30 Break  
 
15:30 - 17:30 Workshop on the Future Trends of Detection, Evolution, Management and 
Applications of Code Clones, Chaired by Chanchal Roy 
 
15:30 - 17:30 Workshop on Cloud Computing, Chaired by Wendy Powley 
 
17:30 - 17:45 Wrap up 
 
18:45 - 21:30 Poster Session and Reception at Bioscience Complex Atrium (building 36 in the 
map) 
 

 
 
 
 
 
 
 
 
 
 
 
 



8 
 

Workshop on Cloud Computing  
 

Chaired by Wendy Powley, Queen's University 
 
Talks: 
 
Azada Khalaj, University of Western Ontario 
A Proxy-Based Mobile Computing Infrastructure 
 
Proxies can be used as gateways between cloud resources and mobile devices to deal with the 
challenges resulted from disconnections and the limited resources of mobile devices. This 
research describes a proxy-based infrastructure that takes into account the proximity between 
mobile device and proxy and the mobility of the client mobile device. Furthermore, proxies 
are chosen dynamically and the services provided by a proxy are dynamically changing based 
on the requirement of the clients for better resource utilization. Several experiments are 
carried out to evaluate the effectiveness of the proposed infrastructure. The results suggest 
that the services offered by the proxy can be used for quick recovery after disconnections 
with only the minimal addition of overhead. 
 
Kamran Sartipi, McMaster University 
Identifying Distributed Features in SOA by Mining Dynamic Call Trees  
 
Distributed nature of web service computing imposes new challenges on software 
maintenance community for localizing different software features and maintaining proper 
quality of service as the services change over time. In this paper, we propose a new approach 
for identifying the implementation of web service features in a service oriented architecture 
(SOA) by mining dynamic call trees that are collected from distributed execution traces. The 
proposed approach addresses the complexities of SOA-based systems that arise from: features 
whose locations may change due to changing of input parameters; execution traces that are 
scattered throughout different service provider platforms; and trace files that contain 
interleaving of execution traces related to different concurrent service users. In this approach, 
we execute different groups of feature-specific scenarios and mine the resulting dynamic call 
trees to spot paths in the code of a service feature, which correspond to a specific user input 
and system state. This allows us to focus on a the implementation of a specific feature in a 
distributed SOA-based system for different maintenance tasks such as bug localization, 
structure evaluation, and performance analysis. We define a set of metrics to assess structural 
properties of a SOA-based system. The effectiveness and applicability of our approach is 
demonstrated through a case study consisting of two service-oriented banking systems. 
 
Gaston Keller, University of Western Ontario 
Data centre management: VM Relocation Problem 
 
Data centres are complex computer systems composed of thousands of physical servers, 
which in turn host a number of virtual servers running user applications. The service demand 
of these applications is dynamic and when it changes, the resource demand of the virtual 
servers hosting the applications changes accordingly. If a virtual server demands more 
resources than its host (physical server) can provide, the virtual server has to be relocated (i.e. 
migrated or replicated) to another host that can satisfy the virtual server’s resource needs. The 



9 
 

focus of our current work is the development of a flexible algorithm that can find a sequence 
of virtual server relocations with the aim of reducing the resource utilization of overloaded 
physical servers in a data centre. 
 
 
Mohammad Hamdaqa, University of Waterloo 
Towards a Cloud Application Modeling Language 
  
Standardizing the process of cloud application development is currently a vibrant concern. 
Although cloud applications share many concepts with existing development paradigms such 
as real time, service oriented and distributed computing; cloud applications have their own 
identity, which developers need to understand in order to develop efficient applications on the 
cloud. The problem with existing software architectures and programming models is that first, 
they have no holistic view that combines all previous paradigms together, and second they 
lack many elements that are needed to model and develop cloud applications efficiently. 
Consequently, there is a need to capture and model elements that can address the on-demand 
nature of cloud applications within their virtual environment, as well as elements that address 
scalability, elasticity, high-availability, fault tolerance and billing. After studying a number of 
cloud platforms, we realized that all these platforms are sharing a common hidden 
architecture and concepts. Clearly, there is a need to extract this architecture and to find the 
ontology that relates cloud concepts with each other in order to facilitate the communication 
between cloud stakeholders. The ontology that will be presented is a part of our research 
group ongoing work towards defining a platform-independent cloud application modeling 
language. 
 
 
Patrick Martin, Andrew Brown, Wendy Powley, Queen’s University  
Jose Luis Vazquez-Poletti, Universidad Complutense de Madrid 
Autonomic Management of Elastic Services in the Cloud 

Cloud computing, with its support for elastic resources that are available on an on-demand, 
pay-as-you-go basis, is an attractive platform for hosting Web-based services that have 
variable demand, yet consistent performance requirements. Effective service management is 
mandatory in order for services running in the cloud, which we call elastic services, to be 
cost-effective.  In this paper we describe a management framework to facilitate elasticity of 
resource consumption by services in the cloud. We extend our framework for services 
management with the necessary concepts and properties to support elastic services. 

 

 

 

 

 



10 
 

Workshop on the Future Trends of Detection, Evolution, 
Management and Applications of Code Clones 

Chaired by: Chanchal K. Roy, University of Saskatchewan, croy@cs.usask.ca 

Abstract: Reusing a code fragment by copying and pasting with or without minor modifications is a 
technique frequently used by programmers, and thus software systems often have duplicate 
fragments of code in them. Such duplicated fragments are called code clones or simply clones. 
Although cloning is beneficial in some cases and often programmers intentionally use it, it can be 
detrimental to software maintenance. For example, if a bug is detected in a code fragment, all the 
fragments similar to it should be investigated to check for the same bug, and when enhancing or 
adapting a piece of code, duplicated fragments can multiply the work to be done. A recent study that 
works on industrial code shows that inconsistent changes to code duplicates are frequent and lead to 
severe unexpected behaviuor. In this workshop, first, we plan to discuss about the future trends of 
detecting clone clones, in particular we plan to talk about in efficiently detecting near-miss (Type 3) 
and semantic (Type 4) code clones. Second, we plan to focus on the insights of clone evolution in 
order both to find out the effects of clones in software maintenance, and the related issues of how to 
manage these clones during the evolution. Third, we plan to gather a set of features for a 
comprehensive clone management system along with the possible technologies of how to build such 
a clone management system. Finally, we plan to discuss the possible applications of clone detection 
in other areas of software engineering and vice versa. 
 
Format of the workshop: 
The workshop will be purely interactive in nature. Each speaker will talk about four to seven 
minutes on his/her position on code clones towards the objectives of the workshop and then will lead 
a discussion for about another three to six minutes on that topic and related issues. Each speaker will 
come up with one or two important questions related to their talk and these questions will work as 
the vehicle for the subsequent discussion. Depending on the availability of time, some speakers 
(especially the seniors ones) might get few extra minutes to lead the discussion.  
 
Invited Speakers cum panelist: 
Bram Adams, Queen’s University, bram@cs.queensu.ca 
Liliane Barbour, Queen’s University, 4lb3@queensu.ca 
Jeremy S. Bradbury, University of Ontario Institute of Technology (UOIT), 
Jeremy.Bradbury@uoit.ca 
James R. Cordy, Queen’s University, cordy@cs.queensu.ca 
Massimiliano Di Penta, University of Sannio, dipenta@unisannio.it 
Michael Godfrey, University of Waterloo, migod@uwaterloo.ca 
Scott Grant, Queen’s University, scott@cs.queensu.ca 
Daqing Hou, Clarkson University, dhou@clarkson.edu 
Andrian Marcus, Wayne State University, amarcus@wayne.edu 
Doug Martin, Queen’s University, doug@cs.queensu.ca 
Philipp Schügerl, Concordia University, philipp.schuegerl@gmail.com 
Minhaz F. Zibran, University of Saskatchewan, mfz946@mail.usask.ca 
 
 
 



11 
 

Posters 
 
Poster 1: Scott Grant (Queen’s University): Visualizations to Support Concept Location  
 
We explore the information provided by concept location techniques like Latent Dirichlet Allocation 
through three distinct visualizations.  Using this information, we demonstrate a relationship between 
topic models and co-maintenance history.  We also explain how these views of source code can give 
insight about the semantic architecture of the code, and why this information is actually important 
for software maintenance. 
 
Poster 2: Martin Mwebesa (University of Ontario Institute of Technology): Using static 
analysis to detect concurrency design patterns 

We propose a static analysis technique to automatically detect concurrent software design patterns in 
Java source code. First, we identify general characteristics (roles) for a given concurrency design 
pattern and next we use TXL, a source transformation language, to match the design pattern roles 
with an actual instance of the design pattern. We evaluate our TXL-based detection technique and 
assess the recall and precision with respect to each concurrency design pattern.  In our evaluation 8 
concurrency design patterns are considered: the Single Threaded Execution pattern; the Balking 
pattern; the Read Write Lock pattern; the Guarded Suspension pattern; the Two Phase Termination 
pattern; the Lock Object pattern; the Producer consumer pattern and the Scheduler pattern.   This 
evaluation is performed on open source java code examples that contain instances of these 8 
patterns.  To measure the precision of our technique, we use mutation on the java code examples and 
revaluate our technique on the mutated code. 
 
Poster 3: Liliane Barbour, Foutse Khomh and Ying Zou (Queen’s University): Late 
Propagation in Software Clones 

Two similar code segments, or clones, form a clone pair within a software system. The changes to 
the clones over time create a clone evolution history. In this work we study late propagation, a 
specific pattern of clone evolution. In late propagation, one clone in the clone pair is modified, 
causing the clone pair to become inconsistent. The code segments are then re-synchronized in a later 
revision. Existing work has established late propagation as a clone evolution pattern, and suggests 
that the pattern is related to a high number of faults. In this study we examine the characteristics of 
late propagation in two long-lived software systems using the Simian and CCFinder clone detection 
tools. We define 8 types of late propagation and compare them to other forms of clone evolution. 
Our results not only verify that late propagation is more harmful to software systems, but also 
establish that some specific cases of late propagations are more harmful than others. Specifically, 
two cases are most risky: (1) when a clone experiences inconsistent changes and then a re-
synchronizing change without any modification to the other clone in a clone pair; and (2) when two 
clones undergo an inconsistent modification followed by a consistent change that modifies both the 
clones in a clone pair. 

Poster 4: Ali Fatolahi (University of Ottawa): TOWARD REUSABILITY IN WEB MODELING 
Using QVT Relations 

In this poster, a model-driven approach for web development is presented. The approach contains 
two important elements that serve reusability: an abstract model and a set of transformations. 
Transformations act as the chaining feature of model-driven development (MDD); that is 



12 
 

transformations add to the value of models by transforming them to those of the desired type. As a 
standard for developing transformations, QVT relations are used in this paper to specify mappings 
from a high-level model to an abstract model of web-based applications. This model is abstract since 
it does not rely on any specific web platform but on the common features of web applications. 
Having this model and its corresponding transformations, model-driven web development for 
specific platforms becomes faster and more reusable. 

Poster 5: Hamzeh Zawawy (University of Waterloo): Root Cause Analysis for Distributed 
Systems using Statistical Techniques 

The complex interactions and the large amount of heterogeneous log data generated in enterprise 
environments renders problem diagnosis challenging. In this paper, we propose a root cause analysis 
framework for distributed systems based on annotated requirements goal models. The monitored 
computer systems are modeled using goal models, which are represented using weighted first-order 
logic rules. These rules are used to infer the root cause for failures in the monitored systems. Log 
data emanating from the monitored systems are used as observation supporting or denying these 
rules. The proposed framework improves over existing approaches by handling uncertainty in 
observations, using natively generated log data, and by providing ranked diagnoses. The framework 
is illustrated using a test environment based on commercial off-the-shelf software systems. Our 
experimental results offer support to the soundness and scalability of our approach. 

Poster 6: Karolina Zurowska (Queen's University): Symbolic analysis of UML-RT models 

Model Driven Development (MDD) has been introduced to improve quality of software products 
and manageability of their development. MDD combines the implementation and successive 
refinement of models until code can be generated from them automatically. MDD has been used in 
different domains, but has been most successful for the development of reactive systems. Several 
MDD tools exist including IBM Rational Software Architect Real Time Edition (IBM RSA RTE), 
IBM Rational Rhapsody and Scade Suite from Esterel Technologies. Although MDD has been used 
in the industry, more research is needed, e.g., to determine how to best support MDD with suitable 
model analyses.  

One of the more successful analysis methods is symbolic execution.  The method, originally 
introduced for programs in the 70s, is based on traversal of a control flow graph with symbolic 
values serving as placeholders for input parameters. The result of such traversal is a symbolic 
execution tree that encompasses all execution paths along with constraints that must be satisfied to 
follow a particular path.  The original idea of symbolic execution was adapted and applied to 
concurrent /parallel systems and also to state based models.  

In the presented work we introduce a technique for symbolic execution of models developed in 
IBM RSA RTE, which are in the UML-RT modeling language.  The technique builds on the intrinsic 
modularity of UML-RT models and starts with a symbolic execution of a non-composite submodels.  
The results, symbolic execution trees, are then composed reflecting the structure of the analyzed 
UML-RT model.  A composite symbolic execution tree, which represents all possible executions of 
the model, is the basis to perform analyses such as reachability, invariants checking or test case 
generation.  

The most important distinguishing characteristic of the presented technique is the reuse of the 
symbolic execution results. This is possible at the level of modules in UML-RT models (called 
capsules) and at the level of action code (that is code in UML-RT State Machines).  The first type of 
reuse guarantees that modules that are used in different configurations are analyzed only once. Reuse 
of symbolic execution results for action code enables analysis of models with different action code 
languages.   



13 
 

We present the technique using a case study. We show steps of a symbolic execution of a UML-
RT model, as well as the results of the performed analysis. We also report on the experiments with 
several other UML-RT models. 

Poster 7: Ernesto Posse (Queen's University): lingenoc: a language definition framework 

The construction of software language processing tools such as interpreters, compilers, analyzers, 
etc. is labour intensive. Parser generators help relieve the effort required to build tools that deal with 
concrete syntax. To represent abstract syntax, designers and implementers typically use well-known 
patterns, in particular, the composite pattern [gamma-et-al:94:design-patterns]. To implement 
operations on abstract syntax, including interpreters, analysis, pretty-printers, etc. some patterns such 
as the visitor pattern [gamma-et-al:94:design-patterns] are often used. In this paper we introduce a 
language definition framework which aims to close the gap between these implementation patterns 
and the formal specification of abstract syntax and language operations. This language description is 
given in terms of basic concepts from universal algebra. From this description, code is generated 
implementing composite and visitor classes for the abstract syntax of a language. A key feature of 
our framework is the ability to merge and combine languages (both syntax and operations) to define 
new languages. We have implemented this framework as a Python library, but the central concepts 
are applicable to other languages. 

Poster 8: Eric James Rapos (Queen's University): Incremental Test Case Generation for UML-
RT Models 

Model driven development (MDD) is on the rise in software engineering and no more so than in the 
realm of real-time systems. Being able to leverage the code generation and validation techniques 
made available through MDD is worth exploring. Currently, the existing process of regenerating test 
cases for a modified model of a system can be costly, inefficient, and sometimes even redundant. It 
is our goal to work on incrementally generating test cases based on an existing test suite and some 
change performed on a given model. Currently, test cases can be generated through the use of their 
symbolic execution trees (SETs). Instead of regenerating test cases directly from the SET, we will 
compare the SET of a model after some refinement, and determine how this changes the generated 
test cases for the given model. It is our hope to develop a prototype that will incrementally generate 
test cases, as opposed to regenerating a test suite every time a model is changed. At the beginning, 
we will use a catalog of model refinements recently presented in the literature, to hopefully improve 
the efficiency of test case generation in the presence of model changes. As an end result, it is our 
goal to present an improved understanding of the impact of typical state machine evolution steps on 
test cases, and how this impact can be mitigated by reusing previously generated test cases. We are 
also aiming to implement this in a software prototype to automate and evaluate this process. 

Poster 9: Kevin Jalbert (University of Ontario Institute of Technology): Predicting how difficult 
bugs are to detect using source code metrics 

The proposed technique uses static source code metrics to predict the difficulty of detecting bugs 
within a source code unit. We use mutation testing with mature test suites to estimate how difficult it 
is to find a bug within the observed source code unit. The estimated difficulty of detecting a bug can 
be used to train a support vector machine with a feature set of source code metrics. After sufficient 
training it becomes possible to predict how difficult bugs are to detect using only source code 
metrics of the observed source code unit. Preliminary results in classifying the difficulty of detecting 
a bug using only a single open source project had a cross validation accuracy of 76.80%. 



14 
 

Poster 10: Turki Alharkan (Queen's University): Intrusion Detection System as a Service 
(IDSaaS) 

Intrusion Detection System (IDS) is a security technology, which can detect, prevent and possibly 
react to computer attacks. IDSs have been proven to be effective tools in the conventional local and 
wide area networks. In a typical network scenario, IDS will generate alerts regarding any security 
threats and log them for further analysis. Then, a network administrator can decide to rely on the 
IDS judgment and take an action or let the system react through a predefined plan. 

In the Cloud Computing environment, the need for IDS is still essential and irreplaceable. Cloud 
consumers can not only depend on the cloud’s provider security infrastructure, but they need to 
monitor and protect their virtual existence by implementing IDS along with other security 
technologies like firewalls, access controls and data encryption within the cloud fabric. 

This is an approach to investigate the possibility to provide IDS security method through the 
concept of Cloud Computing. A key point in deploying IDS in the cloud is to detect all security 
violations resulted from cyber attacks, whether it is originating from inside or outside the cloud, in 
an efficient and cost effective manner. 

 
Poster 11: Nicolas Chausse (Queen's University): Building a general-purpose language analyzer 
using a generative language definition framework 

Given a formal specification of a language's abstract syntax and semantic operations, the language 
definition framework Lingenoc can be used to automatically generate supporting processing tools for 
that language including pretty printers, compilers, and interpreters. We are interested in the efficient 
development of analyzers for languages defined with Lingenoc. More precisely, we will build an 
analyzer that will check programs for different properties related to the reachability of desirable and 
undesirable states (e.g., deadlock or livelock). The analyzer will be general-purpose in the sense that 
it will be applicable to all languages defined with Lingenoc without change. We will build a 
prototype analyzer which will be evaluated on a language used to represent and analyze UML-RT 
models. 

Poster 12: Eyrak Paen (Queen's University): Using transformation evolution to compare 
different model transformation languages 

Transformations play a central role in Model Driven Development. Similar to the development of 
other types of software, a transformation's specification and implementation does not necessarily 
remain static over the course of a project's lifetime. The transformation may evolve. We consider in 
a case study the development of a transformation that converts UML-RT models to a process algebra 
modelling language called kiltera. The specification of the transformation is defined incrementally. 
We implement the increments of this transformation in different model transformation languages and 
compare the artifacts. Our goals are to devise new metrics for comparing model transformation 
languages and to gain more insight into the design of model transformation languages. 

Poster 13: Forough Norouzi (Western Ontario): Energy efficient job forwarding 

The number of high density servers in today’s data centers have been rapidly growing and 
consequently, placing greater demands on power consumption of data centers. Greater energy usage 
results in higher power costs increases cooling costs and maintenance costs of the data center. 
Thermal aware management of data centers can help address these problems. Focusing in thermal 
issues causes delay in response time. In this work, a typical data center and its thermal behavior has 
been simulated and several thermal based job forwarding algorithms have been simulated. These 



15 
 

algorithms has been compared in terms of energy consumption and total delay in job completion. 
Simulation has been done on real batch type workload. Thermal zone job forwarding as our future 
work will be introduced. 

Poster 14: Foutse Khomh and Ying Zou (Queen’s University): Predicting Post-release Defects 
Using Pre-release Field Testing Results 

Field testing is commonly used to detect faults after the in-house (e.g., alpha) testing of an 
application is completed. In the field testing, the application is instrumented and used under normal 
conditions. The occurrences of failures are reported. Developers can analyze and fix the reported 
failures before the application is released to the market. In the current practice, the Mean Time 
Between Failures (MTBF) and the Average usage Time (AVT) are metrics that are frequently used 
to gauge the reliability of the application. However, MTBF and AVT cannot capture the whole 
pattern of failure occurrences in the field testing of an application. In this talk, we present three 
metrics that capture three additional patterns of failure occurrences: the average length of usage time 
before the occurrence of the first failure, the spread of failures to the majority of users, and the daily 
rates of failures. We also present the results of a case study showing that the three metrics 
complement the traditional MTBF and AVT metrics and can predict the number of post-release 
defects in a shorter time frame than MTBF and AVT. 

Poster 15: John Khalil and Ramiro Liscano (University of Ontario Institute of Technology): 
Software Modelling For Wireless Sensor Network 

Network delay and power constraint requirements are two significant challenges for Wireless Sensor 
Networks (WSNs). This is more evident in the WSNs where the real-time properties of the network 
are a significant component of the performance of the WSN. Being able to include and analyze the 
network delays and power consumption of WSNs at the modeling layer can reduce the cost 
associated with dealing with these issues at the coding layer. Model analysis detects the design 
performance behaviour in the early stages of designing and gives the opportunity to enhance the 
design before the actual code is implemented. Using Marte and SysML allows for the software 
modeling at higher abstraction layers other than at the coding layer. In this poster, we present a 
model for WSNs using SysML and Marte, which are profiles of the UML language. Moreover, we 
also present an example of the use of SystemC and MAST analysis tools to help analyse for network 
delays and power consumption in a WSN. 

Poster 16: Kamran Sartipi (McMaster University): Identifying Distributed Features in SOA by 
Mining Dynamic Call Trees  

Distributed nature of web service computing imposes new challenges on software maintenance 
community for localizing different software features and maintaining proper quality of service as the 
services change over time. In this paper, we propose a new approach for identifying the 
implementation of web service features in a service oriented architecture (SOA) by mining dynamic 
call trees that are collected from distributed execution traces. The proposed approach addresses the 
complexities of SOA-based systems that arise from: features whose locations may change due to 
changing of input parameters; execution traces that are scattered throughout different service 
provider platforms; and trace files that contain interleaving of execution traces related to different 
concurrent service users. In this approach, we execute different groups of feature-specific scenarios 
and mine the resulting dynamic call trees to spot paths in the code of a service feature, which 
correspond to a specific user input and system state. This allows us to focus on a the implementation 
of a specific feature in a distributed SOA-based system for different maintenance tasks such as bug 



16 
 

localization, structure evaluation, and performance analysis. We define a set of metrics to assess 
structural properties of a SOA-based system. The effectiveness and applicability of our approach is 
demonstrated through a case study consisting of two service-oriented banking systems. 

Poster 17: M. Mondal, C. K. Roy, R. K Saha, J. Krinke, and K. A. Schneider (University of 
Saskatchewan and University College London): Comparative Stabilities of Cloned and Non-
cloned Code: An Empirical Study 

Code Cloning has been presented as a controversial term in the realm of software engineering 
research because of its dual but contradictory roles in software maintenance. Many in-depth 
empirical studies conducted over the past decade and a few existing impact assessment metrics have 
revealed this dualism. Different researchers have investigated the practical behavior of clones 
through different keenly analytic approaches. Unfortunately, those investigations ended up with 
contradictory concluding remarks. In this poster, we present a comprehensive empirical study that 
aims to analyze the comparative stability of cloned and non-cloned code using three methods 
associated with a respective set of stability measurement metrics. For detecting clones we have used 
the recently introduced hybrid clone detection tool NiCad which exhibits both high precision and 
recall in detecting Type-1, Type-2 and Type-3 clones. Our five dimensional investigation on 12 
diverse subject systems written in three different languages considering three different clone types 
discovers that the candidate methods have disagreements in making decisions regarding the stability 
of cloned code vs. non-cloned code and that code stability depends on the development strategy of 
the subject systems to a great extent. 

Poster 18: M. F. Zibran and C.K. Roy (University of Saskatchewan): Code Clones: Etiology, 
Effects, and Treatment 

Duplicate or similar fragments in the source code are known as code clones. In this poster, we first 
address the causes of cloning in software and distinguish the beneficial and detrimental effects code 
clones. We also study the existence and evolution of clones in 1,636 releases of several real software 
systems in search of factors (e.g., language, paradigm) affecting the cloning phenomenon. Finally, 
we introduce an efficient technique for clone detection in IDE, and a constraint programming 
approach for conflict aware optimal scheduling of code clone refactoring. 

Poster 19: Mark Syer (Queen's University): An Industrial Case Study on Supporting the 
Comprehension of System Behaviour Under Load 

Large-scale software systems achieve concurrency on enormous scales using a number of different 
design patterns. Many of these design patterns are based on pools of pre-existing and reusable 
threads that facilitate incoming service requests. Thread pools limit thread lifecycle overhead (thread 
creation and destruction) and resource thrashing (thread proliferation). Despite their potential for 
scalability, thread pools are hard to configure and test because of concurrency risks like 
synchronization errors and dead lock, and thread pool-specific risks like resource thrashing and 
thread leakage. Addressing these challenges requires a thorough understanding of the behaviour of 
the threads in the thread pool. We argue for a methodology to automatically identify and rank 
deviations in the behaviour of threads based on resource usage. 

Poster 20: Stephen Thomas (Queen's University): Mining Software Repositories Using Topic 
Models 



17 
 

Software repositories, such as source code, email archives, and bug databases, contain unstructured 
and unlabeled text that is difficult to analyze with traditional techniques. We propose the use of 
statistical topic models to automatically discover structure in these textual repositories. This 
discovered structure has the potential to be used in software engineering tasks, such as bug 
prediction and traceability link recovery. Our research goal is to address the challenges of applying 
topic models to software repositories. 

Poster 21: Haroon Malik (Queen's University): A Methodology to Support Load Test Analysis 

Performance analysts rely heavily on load testing to measure the performance of their applications 
under a given load. During the load test, analyst strictly monitor and record thousands of 
performance counters to measure the run time system properties such as CPU utilization, Disk I/O, 
memory consumption, network traffic etc. The most frustrating problem faced by analysts is the time 
spent and complexity involved in analysing these huge counter logs and finding relevant information 
distributed across thousands of counters. We present our methodology to help analysts by 
automatically identifying important performance counters for load test and comparing them across 
tests to find performance gain/loss. Further, our methodology help analysts to understand the root 
cause of a load test failure by finding previously solved problems in test repositories. A case study 
on load test data of a large enterprise application shows that our methodology can effectively guide 
performance analysts to identify and compare top performance counters across tests in limited time 
thereby archiving 88% counter data reduction. 

Poster 22: Ripon K. Saha, Chanchal K. Roy, Kevin A. Schneider (University of 
Saskatchewan): The gCad Near-Miss Clone Genealogy Extractor and Classifier 

Extracting code clone genealogies across multiple versions of a program and classifying them 
according to their change patterns underlies the study of code clone evolution. While there are a few 
studies in the area, the approaches do not handle near-miss clones well and the associated tools are 
often computationally expensive. To address these limitations, we present a framework for 
automatically extracting both exact and near-miss clone genealogies across multiple versions of a 
program and for identifying their change patterns using a few key similarity factors. We have 
developed a prototype clone genealogy extractor, applied it to three open source projects including 
the Linux Kernel, and evaluated its accuracy in terms of precision and recall. Our experience shows 
that the prototype is scalable, adaptable to different clone detection tools, and can automatically 
identify evolution patterns of both exact and near-miss clones by constructing their genealogies. 

 


