ELEC 875
Design Recovery
and
Automated Evolution

Analysis
• Some Systems do not have documented system architecture
 ◊ Extract the system Architecture
• Problems keeping documented architecture up to date
 ◊ Automation?
Linux

• 10 KLOC in 1991 to 1.5MLOC in 1998
 ◊ doubled every year

• Linux Kernel - 800 KLOC
 ◊ documented at individual system level
 ◊ no architectural documentation
 ◊ good guinea pig
Architecture

• Conceptual architecture
 ◊ How developers think about the system
 ◊ only the meaningful links and dependencies
 ◊ Component responsibilities
 ◊ Component interactions

• Activities
 ◊ Capture Functionality
 ◊ Capture Properties
 ◊ Constraints
Architecture

• Concrete Architecture
 ◊ The “real” architecture
 ◊ extracted by some set of tools.
 ◊ Contains extra links required by the implementation

• Neither architecture is documented for Linux
Architecture Change

- Architecture Erosion
 ◊ Conceptual Violations

- Architecture Drift
 ◊ Concrete architecture drifts away from conceptual architecture
Linux Conceptual Architecture

- Read Documentation
 ◊ No conceptual architecture documentation?
 ◊ Some architectural information spread in different documents
 ◊ Some overview documentation
 ◊ Knowledge of other Unix based architectures
 - Tunis, Hector
Linux Conceptual Architecture

- File System
- Memory Manager
- Network
- Scheduler
- IPC
- Init
- Library
Figure 2: File System Conceptual Architecture
Linux Concrete Architecture

- Group source files based on directory structure, naming conventions, source code comments and source code examination
- Extract Relations between source files
- Lift relations between source files to relations between subsystems
- Convert to concrete architecture
Linux Extraction

- cfx - predecessor to cppx
 ◊ function level extraction (Middle Model)
- grok used to turn:
 - relations between functions and functions
 - relations between functions and files
 >>>>>>
 - relations between files
- Files manually assigned to subsystems
- grok used to lift relations from files to subsystems
File Concrete Architecture

Figure 4: Partial Subsystem Hierarchy

ELEC 875 – Design Recovery and Automated Evolution
File Concrete Architecture

Figure 6: File System Concrete Architecture
MM Concrete Architecture

Figure 5: Memory Manager Dependencies
Linux Concrete Architecture

- Given that concrete architecture one would think that the Linux implementers are horrible coders
- Efficiency shortcuts
- Expediency
- Debugging (process scheduler depends on file system) mislocation of printk (process -> library)
- Synchronization primitives in IPC
- Differences at the subsystem level
What Did We Learn?

• Human Assistance Needed in Analysis
• Concrete Architecture Different from Conceptual
 why
 - conceptual architecture incorrect
 - efficiency
 - expediency
 - unanticipated dependencies
 - differences in control flow
 - implementation language or environment constraints
 - some subsystems implemented everywhere!!