ELEC 875
Design Recovery
and
Automated Evolution

Week 2 Class 1
Empirical Studies
Empirical Studies

- Studies Software Engineers
 ◊ what do they really do
 ◊ what do they really need

- Difficult
 ◊ multiple variables
 ◊ expensive
 - students/professional developers
 - real/artificial projects
 ◊ software engineers like other users are conditioned by their past

- Workshop on Empirical Studies of Software (WESS)
Lethbridge & Singer

• T.C. Lethbridge
 ◊ School of Information Technology and Engineering, University of Ottawa
• J. Singer
 ◊ National Research Council
• Study various companies in the Ottawa area
WESS ’97 Paper

- Understanding Software Maintenance Tools: Some Empirical Research
- Overview paper of Empirical Research
- What is a Tool
 ◊ Used by software engineer to perform a software engineering task
 ◊ hierarchical tools
- 5 Questions
 ◊ What tools and what tasks?
 ◊ What differences do tools make?
 ◊ Why use (or not use) a particular tool?
 ◊ What new tools or improvements to tools?
 ◊ How can tools be introduced to SEs?
WESS ’97 Paper

• Measures
 ◊ What tools are used
 ◊ Number of times each tool is used
 ◊ Elapsed time spend using a tool
 ◊ Goals and tasks for particular usage of a tool
 ◊ List of positive attributes
 ◊ List of negative attributes
 ◊ Time to perform a given task
WESS ’97 Paper

- Data Collection
 - Questionnaires (web based)
 - Interviews
 - General structured interviews
 60-90 minutes, 10 page protocol
 - Regular debriefings (every few weeks)
 30-60 minutes
 - Tool reviews
 30-60 minutes
WESS ’97 Paper

- Data Collection
 - Observation
 - real work (30 minute session)
 - use same tools and techniques?
 - artificial tasks
 - Automated logging of tool use
WESS ’97 Paper

- Data Interpretation
 ◊ Small group of engineers
 - statistical sample?
 - defined process
 - domain specific (complex real-time software)
 ◊ larger and more diverse groups?
WESS ’97 Paper

- Observations
 - Most used tools - editors
 - Second most used tools - searching tools
 - Explore software as much as edit software
 - Wish list - analysis tools
 - statistical sample?
WESS ’97 Paper

• Positive Features of Tools
 ◊ Ease of use
 ◊ Useful tools
 ◊ speed of tools

• Generic positive NF requirements
WESS ’97 Paper

• Negative Features of Tools
 ◊ lack of integration
 - don’t want to manually transfer data between tools
 ◊ wrong mix of features

• Difficulty introducing new tools
 ◊ resistance to new tools
 ◊ significant effort to learn new tool
 - will it be worth it?
 ◊ train a single individual to act as consultant within user group
WESS ’97 Paper

• Future Studies
 ◇ collaboration between researchers (spread effort and cost)
 ◇ questionnaires and logging tools in more companies (contacts)
 ◇ observe different engineers in different environments using same tools
 ◇ interviews with different groups of SEs

• Issues
 ◇ Same questionnaires and interview protocols
 ◇ similar methodologies - training/experience/presentation
• Same Research, more Depth
 ◊ identifies some problems with traditional ESP approaches
 ◊ understanding how programmers solve problems does not necessarily lead to better tools
• Usability vs Useful
 ◊ Usability - clarity of interface
 ◊ done in an artificial environment
 - isolated from other factors
 - user forced to use tool
 ◊ does not guarantee that the software is useable
 - would he use the software
CASCON ’97 Paper

- Telecommunications company (Mitel)

 ◊ several million lines of code
 ◊ well defined process

- Survey

 ◊ Reading Documentation tops the list
 ◊ look at source
 ◊ design near bottom of list
 ◊ 57% of time fixing bugs, 35% of time making enhancements
 - differs from published norms, survey effect or difference in business?
 ◊ Validity of surveys?
• Individual Study
 ◊ new employee (experienced)
 ◊ weekly meetings at start
 ◊ 3 weeks apart later
 ◊ mental model of system
 ◊ tasks, “new” information
 ◊ shadow user, record activities
 - observer effect?
 ◊ search is most frequent activity
CASCON ’97 Paper

- Group Study
 ◦ mental model of system
 ◦ interviews
 ◦ shadow user, record activities
 ◦ looking at source, searching is most frequent activities
 ◦ reading docs low on list (although high on survey)
Company Study
◊ company uses custom tools
◊ tool group collects statistics on tool usage (tools log their usage)
◊ compiles - 41% most often
 - nightly builds
 - testing groups
 - excluded
◊ search most frequent activity
◊ editors low - why?
CASCON ’97 Paper

• Results
 ◊ search seems to be where SEs spend most of their time
 ◊ improving search seems to present the greatest opportunity for support

• Just In Time Comprehension
 ◊ system too large to comprehend
 - general understanding
 - task determines what is comprehended
 - ignore rest of problem
CASCON ’97 Paper

- Tool Functional Requirements
 - search for semantic entities in source code
 - display results of search and relationships
 - searches are repeated (history)
- Non-functional requirements
 - system size
 - performance
 - more than one language
 - interoperability
 - independent interfaces (research)
 - support JIC
CASCON ’97 Paper

- Problems with Existing Tools
 ◊ grep
 - no syntax or semantics
 - does not understand relationships
 - time
 ◊ editor searches
 - no semantics
 ◊ IDEs
 - more semantics, limited languages
 - eclipse?
 ◊ analysis tools
 - no integration
CASCON ’97 Paper

- Problems with Existing Tools
 ◊ commercial browsing tools
 - no multiple languages (some improvement)
 - speed
 - limited integration
 ◊ academic
 - problems with integration, speed, automation